本文来源公众号“大数据与人工智能Lab”,仅用于学术分享,侵权删,干货满满。
在自然场景中,例如灯箱广告牌、产品包装盒、商标等,要检测出其中的文字会面临着各种复杂的情况,例如角度倾斜、变形等情况,这时就需要使用基于深度学习的方法进行文字检测。在之前的文章中,介绍了基于卷积神经网络和循环神经网络的CTPN文本检测方法(见文章:大数据与人工智能Lab | 【附论文】白话文本检测经典模型:CTPN-优快云博客),该方法能在自然场景下较好地实现对文字的检测,但在CTPN中给出的文本检测效果是基于水平方向的,对于非水平的文本检测效果并不好,而在自然场景中,很多的文本信息都是带有一定的旋转角度的,例如用手机拍街道上的指示牌,如下图。如果文本检测的结果只有水平方向的,没有带角度信息,那么下图指示牌检测出来的就是红色框结果,而其实绿色框才是理想的检测目标&#x