亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。
游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。
亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。
假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。
由于题目的限制条件是石头的堆数是偶数,且石头的总数是奇数,因此Alex可以选择一种策略总是选偶数堆或者奇数堆的石头,则一定可以胜过Lee。简单说,Alex在题目的条件限制下是必胜的。但这里我们需要进行更一般化的分析,例如石头堆数不一定是偶数,石头总数也不一定是奇数,且不但要判断Alex是否能赢,还要判断最多赢多少分,如果输,能不能提供最少输多少分。这里的分数是指多拿的石头数量。
本文来自 少有人走的路上 的优快云 博客 ,全文地址请点击:https://blog.youkuaiyun.com/androidchanhao/article/details/81271077?utm_source=copy