Description
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
[[1,3,1],
[1,5,1],
[4,2,1]]
Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
解题思路
动态规划,动态方程为
res[i][j] = min(res[i-1][j],res[i][j-1])+grid[i][j];
返回结果 res[m-1][n-1]
实现代码如下
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> res(m,vector<int>(n,grid[0][0]));
for (int i = 1; i< m; i++) {
res[i][0] = res[i-1][0] + grid[i][0];
}
for (int j = 1; j < n; j++) {
res[0][j] = res[0][j-1]+grid[0][j];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
res[i][j] = min(res[i-1][j],res[i][j-1])+grid[i][j];
}
}
return res[m-1][n-1];
}
};