Description
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
这道题的要求是爬n阶楼梯。每次仅仅能够爬1步或2步,总共同拥有多少种不同方法能爬到顶?是动态规划问题。如果要爬到第i阶,能够由i-1和i-2阶1次过去。
因此dp[i] = dp[i-1] + dp[i-2]。时间复杂度:O(n),空间复杂度:O(1)
class Solution {
public:
int climbStairs(int n) {
int n2 = 0, n1 = 1, res = 0;
for(int i = 0; i < n; ++ i) {
res = n2 + n1;
n2 = n1;
n1 = res;
}
return res;
}
};
除此之外本题也是求斐波那契数列的第n+1位问题,时间复杂度:O(n),空间复杂度:O(n),采用动态规划算法复杂度更低
class Solution {
public:
int climbStairs(int n) {
vector<int> v(n + 1);
v[0] = v[1] = 1;
for(int i = 2; i <= n; ++ i)
v[i] = v[i - 1] + v[i - 2];
return v[n];
}
};