Description:
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
You may assume the interval’s end point is always bigger than its start point.
Intervals like [1,2] and [2,3] have borders “touching” but they don’t overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ]
Output: 1
Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.Example 2:
Input: [ [1,2], [1,2], [1,2] ]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.Example 3:
Input: [ [1,2], [2,3] ]
Output: 0
Explanation: You don’t need to remove any of the intervals since they’re already non-overlapping.
解题思路及算法分析
题意是要移除重叠区间,结果返回为移除的最小区间数。本题可用贪心算法解决,以每个元素的end为关键元素排序,end相等的情况下,按start升序排序。本题跟“只有一个场地,要安排尽量多的活动“类似。贪心规则:尽量安排结束时间早的活动。如果后面的活动与已经安排好的兼容,则加入集合。时间复杂度为O(n).
注意的是排序时调用sort要自定义排序条件
代码
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
static bool cmp(Interval a, Interval b) {
if (a.end <= b.end) {
if (a.end < b.end) {
return true;
}
return a.start <= b.start;
}
return false;
}
int eraseOverlapIntervals(vector<Interval>& intervals) {
int size = intervals.size();
if(size == 0) {return 0;}
int count = 0;//移除的区间数
sort(intervals.begin(),intervals.end(),cmp);
int g = intervals[0].end;//必须是排完序后的第一个区间
for (int i = 1; i < size; i++) {
if (intervals[i].start < g) {
count++;
} else g = intervals[i].end;
}
return count;
}
};
或者可以将start排序,代码如下
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
int eraseOverlapIntervals(vector<Interval>& intervals) {
int size = intervals.size();
if(size == 0) return 0;
int count = 0;//移除的区间数
int g = 0;
sort(intervals.begin(),intervals.end(),[](Interval a, Interval b) {
return a.start < b.start;
});
for (int i = 1; i < size; i++) {
if (intervals[i].start < intervals[g].end) {
count++;
if (intervals[i].end < intervals[g].end) g = i;
} else {
g = i;
}
}
return count;
}
};

本文介绍了一种使用贪心算法解决区间重叠问题的方法,通过排序并选择最早结束时间的区间来最小化移除区间数量。


被折叠的 条评论
为什么被折叠?



