LocalCache原理及简单实现

LRU缓存机制与LocalCache实现

转发文章:

http://www.importnew.com/18706.html

https://blog.youkuaiyun.com/xiaxl/article/details/72621810

https://www.cnblogs.com/zhchoutai/p/6726391.html

使用场景

网站性能优化第一定律:优先考虑使用缓存优化性能。

对于一些访问频率高、更新频率小的数据,考虑加入缓存来减少数据库压力。

而分布式缓存Redis等实现,但在有些小型场景可能显得略微笨拙,这时候可考虑使用单机的LocalCache。

LRU算法

首先我们了解一下缓存调度算法LRU——最少使用算法。将最常使用的数据前移,这样最常用数据总是能更快速度读取,而不常用数据被移动到末尾,设置淘汰规则可将其清除。

Java中有LinkedHashMap集合,存取效率都是O(1),并且可设置为访问有序,非常符合LRU算法的过程。

LinkedHashMap实现原理

先看代码:

LinkedHashMap<String, Integer> lmap = new LinkedHashMap<String, Integer>();
lmap.put("语文", 1);
lmap.put("数学", 2);
lmap.put("英语", 3);
lmap.put("历史", 4);
lmap.put("政治", 5);
lmap.put("地理", 6);
lmap.put("生物", 7);
lmap.put("化学", 8);
for(Entry<String, Integer> entry : lmap.entrySet()) {
    System.out.println(entry.getKey() + ": " + entry.getValue());
}

运行结果:

语文: 1
数学: 2
英语: 3
历史: 4
政治: 5
地理: 6
生物: 7
化学: 8

可以观察到,LinkedHashMap实现了HashMap并不存在的插入顺序特性。我们看看其数据结构:

https://cloud.githubusercontent.com/assets/1736354/6981649/03eb9014-da38-11e4-9cbf-03d9c21f05f2.png

LinkedHashMap哈希表和双向链表的结合,每当put、get、access等操作时,该链表会执行相应调整操作。该链表定义了集合的迭代顺序, 默认是按照集合插入顺序(可调整为访问顺序)。

 

访问顺序的(调用get方法)的链表的实现原理:

插入元素(key0,value0)、(key1,value1)后的链表结构

LinkedHashMap是一个双向链表,向链表中插入两个元素key0和key1后,双向链表的结构如下图所示:

map.put(key0, value0);
map.put(key1, value1);

调用map.get(key0)后的链表结构如下:

map.get(key0);

移除最早使用的元素时:

header.next()的数据为 (key1,value1) 。

每次调用 map.get(key)方法 后,都会将该元素放到Header元素的上一个;每次移除时,都会先移除header.next()元素;从而达到了保留最近使用的元素,移除了最早使用的元素。这就是Lru的实现原理。

重写后的HashMap方法

 

LinkedHashMap有一个accessOrder。False使用插入顺序,true使用访问顺序,默认是fasle

/**

 * The iteration ordering method for this linked hash map: <tt>true</tt>

 * for access-order, <tt>false</tt> for insertion-order.

 *

 * @serial

 */

final boolean accessOrder;

LinkedHashMap重新实现了HashMap的Entry:

重写的Entry增加了after和before引用,代表前置后置指针。

static class Entry<K,V> extends HashMap.Node<K,V> {
    Entry<K,V> before, after;
    Entry(int hash, K key, V value, Node<K,V> next) {
        super(hash, key, value, next);
    }
}

还重写了HashMap几个方法, 就是为了让节点根据访问顺序更新到最新的位置上:

// 节点访问后

void afterNodeAccess(Node<K,V> e) { // move node to last
    LinkedHashMap.Entry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }

        tail = p;
        ++modCount;
    }
}


// 节点插入后

void afterNodeInsertion(boolean evict) { // possibly remove eldest

    LinkedHashMap.Entry<K,V> first;

    if (evict && (first = head) != null && removeEldestEntry(first)) {

        K key = first.key;

        removeNode(hash(key), key, null, false, true);

    }

}

 // 节点移除后

void afterNodeRemoval(Node<K,V> e) { // unlink
    LinkedHashMap.Entry<K,V> p =
        (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
    p.before = p.after = null;
    if (b == null)
        head = a;
    else
        b.after = a;
    if (a == null)
        tail = b;
    else
        a.before = b;
}

 在 put 的时候会根据最大容量来判断是否需要移除最不常用的元素了。要实现LRU的话,我们需要重写这个方法,他代表是否删除最老的元素,此方法默认返回false,

 // 节点失效规则

最常用的元素如何处理。内部原理就是当每次 get 的时候,如果找到了元素就把元素重新添加到链表的头部。


public V get(Object key) {
        Entry<K,V> e = (Entry<K,V>)getEntry(key);
        if (e == null)
            return null;
        e.recordAccess(this);
        return e.value;
}
void recordAccess(HashMap<K,V> m) {
            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
            if (lm.accessOrder) {
                lm.modCount++;
                 //先把自己移除,然后在把自己添加进去。
                remove();
                addBefore(lm.header);
            }
        }

实现LocalCache功能目标

     实现一个全局范围的LocalCache,各个业务点使用自己的Namespace对LocalCache进行逻辑分区。所以在LocalCache中进行读写採用的key为(namespace+(分隔符)+数据key)。如存在下面的一对keyValue :  NameToAge,Troy -> 23 。要求LocalCache线程安全,且LocalCache中总keyValue数量可控,提供清空,调整大小,dump到本地文件等一系列操作。

LRU Map的实现

package toutiao;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.lang.ref.SoftReference;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LRUMap<T> extends LinkedHashMap<String, SoftReference<T>> implements Externalizable {

    private static final long serialVersionUID = -7076355612133906912L;

    /** The maximum size of the cache. */
    private int maxCacheSize;

    /* lock for map */
    private final Lock lock = new ReentrantLock();

    /**
     * 默认构造函数,LRUMap的大小为Integer.MAX_VALUE
     */
    public LRUMap() {
        super();
        maxCacheSize = Integer.MAX_VALUE;
    }

    /**
     * Constructs a new, empty cache with the specified maximum size.
     */
    public LRUMap(int size) {
        super(size + 1, 1f, true);
        maxCacheSize = size;
    }

    /**
     * 让LinkHashMap支持LRU。假设Map的大小超过了预定值,则返回true,LinkedHashMap自身实现返回
     * fasle。即永远不删除元素
     */
    @Override
    protected boolean removeEldestEntry(Map.Entry<String, SoftReference<T>> eldest) {
        boolean tmp = (size() > maxCacheSize);
        return tmp;
    }

    public T addEntry(String key, T entry) {
        try {
            SoftReference<T> sr_entry = new SoftReference<T>(entry);
            // add entry to hashmap
            lock.lock();
            put(key, sr_entry);
        }
        finally {
            lock.unlock();
        }
        return entry;
    }

    public T getEntry(String key) {
        SoftReference<T> sr_entry;
        try {
            lock.lock();
            if ((sr_entry = get(key)) == null) {
                return null;
            }
            // if soft reference is null then the entry has been
            // garbage collected and so the key should be removed also.
            if (sr_entry.get() == null) {
                remove(key);
                return null;
            }
        }
        finally {
            lock.unlock();
        }
        return sr_entry.get();
    }

    @Override
    public SoftReference<T> remove(Object key) {
        try {
            lock.lock();
            return super.remove(key);
        }
        finally {
            lock.unlock();
        }
    }

    @Override
    public synchronized void clear() {
        super.clear();
    }

    @Override
    public void writeExternal(ObjectOutput out) throws IOException {
        Iterator<Map.Entry<String, SoftReference<T>>> i = (size() > 0) ?
                entrySet().iterator() : null;
        // Write out size
        out.writeInt(size());
        // Write out keys and values
        if (i != null) {
            while (i.hasNext()) {
                Map.Entry<String, SoftReference<T>> e = i.next();
                if (e != null && e.getValue() != null && e.getValue().get() != null) {
                    out.writeObject(e.getKey());
                    out.writeObject(e.getValue().get());
                }
            }
        }
    }

    @Override
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        // Read in size
        int size = in.readInt();
        // Read the keys and values, and put the mappings in the Map
        for (int i = 0; i < size; i++) {
            String key = (String) in.readObject();
            @SuppressWarnings("unchecked")
            T value = (T) in.readObject();
            addEntry(key, value);
        }
    }

}

LocalCache的性能问题:

假设在LocalCache中仅仅使用一个LRU Map。将产生性能问题:1. 单个LinkedHashMap中元素数量太多 2. 高并发下读写锁限制。所以能够在LocalCache中使用多个LRU Map,并使用key 来 hash到某个LRU Map上,以此来提高在单个LinkedHashMap中检索的速度以及提高总体并发度。

LocalCache实现

     这里hash选用了Wang/Jenkins hash算法。实现Hash的方式參考了ConcurrentHashMap的实现。

import java.io.File;
import java.lang.ref.SoftReference;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LocalCache{

    private final int size;
    /**
     * 本地缓存最大容量
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 本地缓存支持最大的分区数
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * 本地缓存存储的LRUMap数组
     */
    LRUMap<CacheObject>[] segments;

    /**
     * Mask value for indexing into segments. The upper bits of a key's hash
     * code are used to choose the segment.
     */
    int segmentMask;

    /**
     * Shift value for indexing within segments.
     */
    int segmentShift;

    /**
     *
     * 计数器重置阀值
     */
    private static final int MAX_LOOKUP = 100000000;

    /**
     * 用于重置计数器的锁。防止多次重置计数器
     */
    private final Lock lock = new ReentrantLock();

    /**
     * Number of requests made to lookup a cache entry.
     */
    private AtomicLong lookup = new AtomicLong(0);

    /**
     * Number of successful requests for cache entries.
     */
    private AtomicLong found = new AtomicLong(0);

    public LocalCache(int size) {
        this.size = size;
    }


    public CacheObject get(String key) {
        if (StringUtils.isBlank(key)) {
            return null;
        }
        // 添加计数器
        lookup.incrementAndGet();

        // 假设必要重置计数器
        if (lookup.get() > MAX_LOOKUP) {
            if (lock.tryLock()) {
                try {
                    lookup.set(0);
                    found.set(0);
                }
                finally {
                    lock.unlock();
                }
            }
        }

        int hash = hash(key.hashCode());
        CacheObject ret = segmentFor(hash).getEntry(key);
        if (ret != null) {
            found.incrementAndGet();
        }
        return ret;
    }


    public void remove(String key) {
        if (StringUtils.isBlank(key)) {
            return;
        }
        int hash = hash(key.hashCode());
        segmentFor(hash).remove(key);
        return;
    }

    public void put(String key, CacheObject val) {
        if (StringUtils.isBlank(key) || val == null) {
            return;
        }
        int hash = hash(key.hashCode());
        segmentFor(hash).addEntry(key, val);
        return;
    }

    public synchronized void clearCache() {
        for (int i = 0; i < segments.length; ++i) {
            segments[i].clear();
        }
    }

    public synchronized void reload() throws Exception {
        clearCache();
        init();
    }

    public synchronized void dumpLocalCache() throws Exception {
        for (int i = 0; i < segments.length; ++i) {
            String tmpDir = System.getProperty("java.io.tmpdir");
            String fileName = tmpDir + File.separator + "localCache-dump-file" + i + ".cache";
            File file = new File(fileName);
            ObjectUtils.objectToFile(segments[i], file);
        }
    }

    @SuppressWarnings("unchecked")
    public synchronized void restoreLocalCache() throws Exception {
        for (int i = 0; i < segments.length; ++i) {
            String tmpDir = System.getProperty("java.io.tmpdir");
            String fileName = tmpDir + File.separator + "localCache-dump-file" + i + ".cache";
            File file = new File(fileName);
            LRUMap<CacheObject> lruMap = (LRUMap<CacheObject>) ObjectUtils.fileToObject(file);
            if (lruMap != null) {
                Set<HashMap.Entry<String, SoftReference<CacheObject>>> set = lruMap.entrySet();
                Iterator<HashMap.Entry<String, SoftReference<CacheObject>>> it = set.iterator();
                while (it.hasNext()) {
                    HashMap.Entry<String, SoftReference<CacheObject>> entry = it.next();
                    if (entry.getValue() != null && entry.getValue().get() != null) {
                        segments[i].addEntry(entry.getKey(), entry.getValue().get());
                    }
                }
            }
        }
    }


    /**
     * 本地缓存命中次数,在计数器RESET的时刻可能会出现0的命中率
     */
    public int getHitRate() {
        long query = lookup.get();
        return query == 0 ? 0 : (int) ((found.get() * 100) / query);
    }

    /**
     * 本地缓存訪问次数。在计数器RESET时可能会出现0的查找次数
     */
    public long getCount() {
        return lookup.get();
    }

    public int size() {
        final LRUMap<CacheObject>[] segments = this.segments;
        long sum = 0;
        for (int i = 0; i < segments.length; ++i) {
            sum += segments[i].size();
        }
        if (sum > Integer.MAX_VALUE) {
            return Integer.MAX_VALUE;
        } else {
            return (int) sum;
        }
    }


    /**
     * Returns the segment that should be used for key with given hash
     *
     * @param hash
     *            the hash code for the key
     * @return the segment
     */
    final LRUMap<CacheObject> segmentFor(int hash) {
        return segments[(hash >>> segmentShift) & segmentMask];
    }


    /* ---------------- Small Utilities -------------- */

    /**
     * Applies a supplemental hash function to a given hashCode, which defends
     * against poor quality hash functions. This is critical because
     * ConcurrentHashMap uses power-of-two length hash tables, that otherwise
     * encounter collisions for hashCodes that do not differ in lower or upper
     * bits.
     */
    private static int hash(int h) {
        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h << 15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h << 3);
        h ^= (h >>> 6);
        h += (h << 2) + (h << 14);
        return h ^ (h >>> 16);
    }

    @SuppressWarnings("unchecked")
    public void init() throws Exception {
        int concurrencyLevel = 16;
        int capacity = size;
        if (capacity < 0 || concurrencyLevel <= 0) {
            throw new IllegalArgumentException();
        }
        if (concurrencyLevel > MAX_SEGMENTS) {
            concurrencyLevel = MAX_SEGMENTS;
        }
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        segmentShift = 32 - sshift;
        segmentMask = ssize - 1;
        this.segments = new LRUMap[ssize];
        if (capacity > MAXIMUM_CAPACITY) {
            capacity = MAXIMUM_CAPACITY;
        }
        int c = capacity / ssize;
        if (c * ssize < capacity) {
            ++c;
        }
        int cap = 1;
        while (cap < c) {
            cap <<= 1;
        }
        cap >>= 1;
        for (int i = 0; i < this.segments.length; ++i) {
            this.segments[i] = new LRUMap<CacheObject>(cap);
        }
    }
}

 

 

 

<think> 我们正在讨论Guava Cache的expireAfterAccess方法原理。根据用户的问题,需要详细解释该方法的内部工作机制。 注意:用户要求参考站内引用,但这里没有提供具体的引用文献,因此我将根据Guava Cache的公开文档和常见实现原理进行解释。 首先,expireAfterAccess是Guava Cache中设置条目在指定时间内未被访问则自动过期的一种机制。这里的“访问”包括读和写操作。 原理要点: 1. Guava Cache使用类似ConcurrentHashMap的结构存储数据,但增加了过期和淘汰机制。 2. 对于每个缓存条目,记录一个“访问时间”(由系统ticker提供,通常是系统时钟,但可替换)。 3. 当进行任何访问操作(get或put)时,会更新该条目的访问时间。 4. 缓存维护一个访问队列(通常是双向链表),用于实现基于访问顺序的过期。在Guava Cache中,这是通过一个WriteOrderQueue(用于写顺序,但expireAfterAccess也会使用类似的机制)或者一个独立的访问队列来实现的。实际上,在Guava Cache的实现中,expireAfterAccess和expireAfterWrite使用同一个队列(写队列),但expireAfterAccess在访问时会更新写入时间(因此也更新了在写队列中的位置)[^1]。 5. 过期清理的触发:在访问缓存(get、put等)时,会触发清理(惰性清理);此外,还可以配置定期清理(通过设置refreshAfterWrite等,但expireAfterAccess本身不直接触发定期清理,而是依赖于写操作或读操作触发清理)。 具体步骤: - 当创建缓存时,如果指定了expireAfterAccess(duration, timeUnit),则会为每个条目记录一个访问时间(初始值为当前时间)。 - 每当有读操作(get)或写操作(put)更新该条目时,访问时间会被更新为当前时间。 - 缓存维护一个按访问时间排序的队列(实际上,在Guava Cache中,expireAfterAccess与expireAfterWrite共享一个写队列,但每次访问都会更新写入时间,从而也相当于更新了访问时间[^2])。 - 当需要清理过期条目时(例如,在每次写操作后,或者读操作时可能会触发清理),会检查队列头部的元素(即最早访问的条目)是否过期(当前时间 - 访问时间 > duration)。如果过期,则逐出该条目。 注意:由于惰性清理机制,缓存并不保证在过期后立即删除条目,而是在后续的访问中逐步清理。 另外,在Guava Cache中,这种基于访问时间的过期策略与基于写入时间的过期策略(expireAfterWrite)是相互独立的,可以同时设置。 下面是一个简单的代码示例(仅用于展示概念,实际实现更复杂): 假设有一个缓存条目类: ```java class CacheEntry<V> { V value; long lastAccessTime; // 最后访问时间 } ``` 在get操作时: ```java public V get(K key) { CacheEntry<V> entry = map.get(key); if (entry != null) { long now = ticker.read(); if (now - entry.lastAccessTime > expireDuration) { // 已过期,移除 map.remove(key); return null; } else { // 更新访问时间 entry.lastAccessTime = now; // 并将该条目移动到队列的尾部(表示最近访问)[实际上Guava使用写队列,这里简化] return entry.value; } } return null; } ``` 但是,实际Guava Cache的实现要复杂得多,因为它使用了分段锁(类似于ConcurrentHashMap)来支持高并发,并且维护了一个访问队列(写队列)来按顺序处理过期。 引用说明: [^1]: Guava Cache使用一个队列(通常称为写队列)来维护条目的写入顺序,而对于expireAfterAccess,每次访问都会更新写入时间(因为访问被视为一次写入队列的操作,从而更新了在队列中的位置)。但实际上,在Guava Cache中,expireAfterAccess和expireAfterWrite共享同一个队列(writeQueue),因为每次访问(读或写)都会触发一次写操作(更新访问时间)[参考Guava源码中的LocalCache类]。 [^2]: 在Guava Cache中,每个缓存条目都有一个writeTime字段,用于记录写入时间(包括初始写入和后续访问更新的时间)。expireAfterAccess的过期检查就是基于这个时间字段。 相关问题: 1. expireAfterAccess与expireAfterWrite有什么区别? 2. Guava Cache的过期清理是实时的吗?如果不是,那它是如何触发的? 3. 如何配置Guava Cache以同时使用expireAfterAccess和expireAfterWrite? 4. 在并发环境下,Guava Cache如何处理expireAfterAccess的更新和清理? </think> ### Guava Cache的`expireAfterAccess`方法原理 `expireAfterAccess`是Google Guava Cache中用于控制缓存条目基于**访问时间**自动过期的核心机制,其工作原理可分为以下层次: #### 1. **基础行为** - 当为缓存配置`expireAfterAccess(duration, timeUnit)`后,任何条目在最后一次访问(读或写)后超过指定时间未被触碰,则自动失效。 - 访问行为包括: - `get()`读取操作 - `put()`写入操作 - `getIfPresent()`查询操作 - 显式调用`asMap()`后的访问[^1] #### 2. **底层实现机制** - **时间记录**:每个缓存条目维护一个`accessTime`时间戳,记录最后一次访问的纳秒级时间(通过`System.nanoTime()`获取)。 - **惰性清理(Lazy Eviction)**: - 过期检查不依赖后台线程,而是在以下操作时触发: - 缓存写入(`put()`) - 缓存读取(`get()`) - 显式调用`cleanUp()`方法 - 例如执行`cache.get(key)`时,会检查该条目是否满足: $$ \text{currentTime} - \text{accessTime} > \text{duration} $$ 若成立则直接删除该条目[^2]。 - **数据结构优化**: - 使用**并发哈希表+双向链表**(类似LinkedHashMap)按访问顺序排序。 - 链表头部存放最久未访问条目,尾部存放最近访问条目,实现$O(1)$时间复杂度的过期检查[^3]。 #### 3. **并发控制** - 基于分片锁(Segment Locking): - 缓存被分为多个Segment(默认16个),每个Segment独立加锁。 - 更新`accessTime`时仅需获取对应Segment锁,避免全局锁竞争。 - 时间戳更新使用`volatile`变量,保证多线程可见性。 #### 4. **与其他过期策略的差异** | **策略** | `expireAfterAccess` | `expireAfterWrite` | |----------------------|-----------------------------------|-----------------------------------| | 触发条件 | 读/写操作后超时 | 写入操作后超时 | | 适用场景 | 低频访问的冷数据 | 需要定期刷新的数据(如配置信息) | | 链表类型 | 访问顺序链表 | 写入顺序链表 | ### 示例代码 ```java Cache<String, Data> cache = CacheBuilder.newBuilder() .expireAfterAccess(10, TimeUnit.MINUTES) // 10分钟未访问则过期 .build(); // 触发访问时间更新 cache.put("key1", data); // 写入更新accessTime Data val = cache.get("key1"); // 读取更新accessTime ```
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值