Codeforces 165E Compatible Numbers

CodeForces 165E解题报告
本文提供CodeForces 165E题目的解题思路及实现代码,采用二进制位运算预处理技巧,解决数列中两数按位与为0的问题。

题目链接:http://codeforces.com/problemset/problem/165/E


题意:给出n大小的数列,为数列中的每一个数找到一个与其进行&操作后等于0的数,并且该数也在该数列中



思路:假设一个数的二进制为10101,将其0位取反得到一些数:11101,10111,11111,与变化后的数进&操作得到0的数同样&1010等于0,那么将数列中所有数按照这样方法进行预处理,出现过的数用vis数组标记为1,如果我们要判断一个数x能否在该数列中找到&操作后等于0的数,我们就将x取反得到y,如果vis[y]等于1,那么就可以找到

            接下来就要将y复原成数列中的数,我们尝试将y中的1取反得到yc,如果vis[yc]依然等于1,那么该位置可以不必要等于1,我们将y更新yc;如果vis[yc]等于0,那么这一位必然等于1,res+=(1<<i)。



#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define maxn 4000000
using namespace std;

int s[1000030],vis[5000030];

int getlen(int x)
{
    int sum=0;
    while (x)
    {
        x/=2;
        sum++;
    }
    return sum;
}

int main()
{
    int n;
    while (scanf("%d",&n)!=EOF)
    {
        int maxx=0;
        memset(vis,0,sizeof(vis));
        for (int i=0;i<n;i++)
        {
            scanf("%d",&s[i]);
            vis[s[i]]=1;
            maxx=max(s[i],maxx);
        }

        int len=getlen(maxx);
        maxx=(1<<(len))-1;
        for (int i=0;i<maxx;i++)
        {
            if (vis[i])
            {
                for (int j=0;j<len;j++)
                {
                    if ((i&(1<<j))==0)
                    {
                        vis[i|(1<<j)]=1;
                    }
                }
            }
        }

        for (int i=0;i<n;i++)
        {
            int tmp=maxx-s[i];
            if (!vis[tmp])
            {
                printf("%d ",-1);
            }
            else
            {
                int res=0;
                for (int j=0;j<len;j++)
                {
                    if (tmp&(1<<j))
                    {
                        int tmp2=tmp^(1<<j);
                        if (!vis[tmp2])
                            res+=(1<<j);
                        else
                            tmp^=(1<<j);
                            
                    }
                }
                printf("%d ",res);
            }
        }
        printf("\n");
    }
    return 0;
}


### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值