三种保证URL地址可信的加密方式

本文探讨了资源服务器在公网环境下如何确保仅接收可信HTTP请求的方法。通过用户认证、URL时效性和服务器信任机制,提出三种安全策略:自定义加密签名、对称加密及结合非对称与对称加密算法,以防止伪造URL、盗链和资源被非法采集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日接到一个需求,要求一台资源服务器不仅在可以暴露在公网环境下的同时,还要保证只接受并处理可信的http访问请求。

 

需求场景如图:

为了访问资源文件,用户需要首先访问某一台Frontend Server进行用户身份认证———所有的用户信息均由Frontend Server保存,Frontend Server认证通过后返回真实的重定向地址,用户再根据重定向地址访问Resource Server获取资源文件。

具体的使用场景正如上面所述,下面是我的思考过程...

 

为了保证资源服务器收到的是一个可信的重定向地址,在安全性上有三点考虑:

 

  1. 重定向地址必须是可信的,即不可以被伪造,必须是由某一台Frontend Server返回的重定向地址。
  2. 为了防止盗链或资源被采集,每个Frontend Server返回的重定向地址应具有时效性。这个可以通过在链接地址上增加时间戳实现,但前提是该时间戳不可以被伪造。
  3. 最后,在必要的情况下,还可以不去响应某一台Frontend Server返回的重定向地址,即认为某一台Frontend Server的重定向地址不可信、该Frontend Server不可信。这要求Resource Server能够及时标示一台Frontend Server为不可信服务器,并且该Frontend  Sever服务器还不可伪造剩余可信服务器返回的重定向地址。

 

以上三点也可以总结为:防止公网用户伪造URL地址,防止不可信Frontend Server伪造地址,防止过期URL地址访问。

由于Resource Server需要允许所有的公网用户访问,所以不能对Ip进行限制,并且一般情况下Resouce Server也不会与Frontend Server直接通信,因此只能通过URL的验证方式。Frontend Server在生成每个URL的过程中中应包括Resource Server为每一个Frontend Server分配的账户fsId、密钥fsKey以及记录当前URL生成时间的时间戳fstime。fsid必须明文传输,fsKey做为加密运算的一个常量不可以明文传输。

可以想到的有如下三种:

1.使用自定的加密函数生成加密签名字符串。 
加密函数将所有需要明文传输的参数以及当前Frontend Server使用的密钥fsKey做为参数并通过MD5转换后生成加密签名字符串,md5(encode(params,fsid, fskey, fstime))。
重定向地址链接:

http://res.com/fsid=***&fstime=***¶ms=***&signmsg=md5(encode(params,fsid,fskey, fstime))

Resource Server收到该请求后

  • 根据fstime判断该请求是否过期,过期请求直接返回。
  • 根据fsid判断该Frontend Server是否可信,如可信再根据fsid获得服务器端保存的fskey。
  • 使用相同的参数加密签名过程,Resource Server根据params,fsid, fskey, fstime生成签名字符串。
  • 比较重定向地址传来的签名字符串signmsg与本地生成的签名字符串是否相同,相同则认为是可信请求,否则为非法请求。

2.使用对称加密算法保证HTTP通信可信。 
Resource Server为每一台Frontend Server分配不同的Des密钥(fskey),Frontend Server使用对称加密算法对拼接后的传递参数进行加密des(params|fstime)
重定向地址链接:
http://res.com/fsid=***&desmsg= des(params|fstime) 
Resource Server收到该请求后

  • 首先根据fsid判断该Frontend Server是否可信,如可信再根据fsid获得每个Frontend Server使用的Des密钥fskey。
  • 使用密钥对desmsg信息解密,解密失败直接返回。
  • 根据解密后的fstime判断是否过期,过期直接返回。

3.同时使用非对称,对称加密算法保证HTTP通信可信。 
Frontend Server随机生成key做为对称加密算法的公钥des(params|fskey|fstime),并使用Resource Server提供的公钥对key进行非对称加密rsa(key)
重定向地址链接:
http://res.com/fsid=***&rsamsg=rsa(key)&desmsg= des(params|fskey|fstime) 
Resource Server收到该请求后

  • 首先根据fsid判断该Frontend Server是否可信,如可信再根据服务器端保存的非对称加密私钥解密rsa(key)。
  • 根据key解密des(params|fskey|fstime)。
  • 通过fsid获得服务器端保存的fskey,对比解密后的fskey,如果不相同则认为是Frontend Server伪造的非法请求。
  • 根据fstime判断是否过期,过期直接返回。


以上三种方法第一种会暴露所有的明文传递参数,第二种貌似最方便但却有被攻破的危险,第三种有可能又会产生效率的问题。

由于没有进行过相关方面的开发,以上也是对平时了解有限的一些资料的总结,难免考虑不周。各位有更好的方法和建议吗?

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值