摘要
ResponseSynthesizer是LlamaIndex中负责将检索到的信息合成为最终回答的核心组件,它位于整个RAG流程的末端,负责将经过处理的节点信息转化为自然语言响应。本文将深入探讨ResponseSynthesizer的工作原理、内置类型、配置选项以及在实际应用中的使用方法,帮助开发者更好地理解和应用这一关键组件。
正文
1. 引言
在前面的博客中,我们详细介绍了Postprocessor对检索结果的优化处理。经过Retriever检索和Postprocessor优化后的节点信息,最终需要通过ResponseSynthesizer转化为用户可以理解的自然语言回答。ResponseSynthesizer作为LlamaIndex架构中的最后一个关键环节,其质量直接决定了用户最终获得的答案质量。理解ResponseSynthesizer的工作原理和使用方法,对于构建高质量的LLM应用至关重要。
2. ResponseSynthesizer基础概念
2.1 什么是ResponseSynthesizer
ResponseSynthesizer是LlamaIndex中负责将检索到的节点信息合成为自然语言响应的组件。它接收来自Postprocessor的优化节点列表,通过特定的合成策略和提示词模板,利用大语言模型生成最终的回答。
2.2 ResponseSynthesizer的核心特点
- 合成专注:专门负责信息合成和回答生成
- 模式多样:支持多种响应合成模式以适应不同场景
- 可配置性:提供丰富的配置选项以满足不同需求
- 可扩展性:支持自定义实现以适应特定场景
- 质量控制:通过多种机制确保生成答案的质量
3. ResponseSynthesizer工作原理
3.1 ResponseSynthesizer架构
ResponseSynthesizer在LlamaIndex整体架构中的位置如下:
- 信息接收:接收来自Postprocessor的优化节点列表
- 策略应用:应用特定的合成策略
- 提示构建:基于策略构建合适的提示词
- LLM调用:调用大语言模型生成回答
- 结果返回:将生成的回答返回给用户
3.2 ResponseSynthesizer工作流程
4. 内置ResponseSynthesizer类型
4.1 CompactAndRefine
CompactAndRefine是默认的响应合成模式,它首先将所有节点信息压缩成一个紧凑的上下文,然后逐步细化生成回答:
from llama_index.core.response_synthesizers import ResponseMode
# 使用CompactAndRefine模式
query_engine = index.as_query_engine(
response_mode=ResponseMode.COMPACT_AND_REFINE
)
# 执行查询
response = query_engine.query("人工智能的发展历程是怎样的?")
print(response)
4.2 TreeSummarize
TreeSummarize通过树形结构逐步汇总节点信息,适合处理大量节点:
# 使用TreeSummarize模式
query_engine = index.as_query_engine(
response_mode=ResponseMode.TREE_SUMMARIZE
)
# 执行查询
response = query_engine.query("机器学习的主要算法有哪些?")
print(response)
4.3 SimpleSummarize
SimpleSummarize将所有节点信息简单汇总后生成回答:
# 使用SimpleSummarize模式
query_engine = index.as_query_engine(
response_mode=ResponseMode.SIMPLE_SUMMARIZE
)
# 执行查询
response = query_engine.query("深度学习的应用领域")
print(response)
4.4 Refine
Refine模式逐个处理节点信息,逐步完善回答:
# 使用Refine模式
query_engine = index.as_query_engine(
response_mode=ResponseMode.REFINE
)
# 执行查询
response = query_engine.query("自然语言处理的技术进展")
print(response)
4.5 Compact
Compact模式将节点信息压缩后一次性生成回答:
# 使用Compact模式
query_engine = index.as_query_engine(
response_mode=ResponseMode.COMPACT
)
# 执行查询
response = query_engine.query("计算机视觉的发展现状")
print(response)
5. ResponseSynthesizer配置选项
5.1 自定义提示词模板
from llama_index.core.prompts import PromptTemplate
# 创建自定义提示词模板
custom_qa_prompt = PromptTemplate(
"请基于以下信息回答问题,要求使用中文回答:\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"问题: {query_str}\n"
"回答: "
)
# 在响应合成器中使用自定义模板
query_engine = index.as_query_engine(
text_qa_template=custom_qa_prompt
)
# 执行查询
response = query_engine.query("什么是人工智能?")
5.2 配置不同响应模式
from llama_index.core.response_synthesizers import ResponseMode
# 配置不同的响应模式
response_configs = {
"compact": {
"response_mode": ResponseMode.COMPACT,
"verbose": True
},
"tree_summarize": {
"response_mode": ResponseMode.TREE_SUMMARIZE,
"use_async": True
},
"refine": {
"response_mode": ResponseMode.REFINE,
"refine_template": custom_refine_prompt # 自定义细化模板
},
"compact_and_refine": {
"response_mode": ResponseMode.COMPACT_AND_REFINE,
"streaming": True # 启用流式响应
}
}
# 根据需求选择配置
selected_config = response_configs["compact_and_refine"]
query_engine = index.as_query_engine(**selected_config)
6. 自定义ResponseSynthesizer
6.1 继承BaseSynthesizer
from llama_index.core.response_synthesizers import BaseSynthesizer
from llama_index.core.base.response.schema import Response
from typing import List
class CustomResponseSynthesizer(BaseSynthesizer):
"""自定义响应合成器"""
def __init__(self, llm, custom_prompt_template=None, formatting_func=None):
self.llm = llm
self.custom_prompt_template = custom_prompt_template or self._default_prompt()
self.formatting_func = formatting_func or self._default_formatter()
super().__init__()
def _default_prompt(self):
"""默认提示词模板"""
return (
"基于以下信息回答问题,要求:\n"
"1. 回答准确完整\n"
"2. 使用中文\n"
"3. 条理清晰\n"
"4. 如信息不足,请说明\n\n"
"信息:{context_str}\n\n"
"问题:{query_str}\n\n"
"回答:"
)
def _default_formatter(self):
"""默认格式化函数"""
def formatter(response_text):
# 简单的格式化处理
lines = response_text.strip().split('\n')
formatted_lines = []
for line in lines:
if line.strip():
formatted_lines.append(line.strip())
return '\n'.join(formatted_lines)
return formatter
def synthesize(self, query_bundle, nodes, **kwargs):
"""实现合成逻辑"""
# 合并节点内容
context_str = self._merge_context(nodes)
# 构建提示词
prompt = self.custom_prompt_template.format(
context_str=context_str,
query_str=query_bundle.query_str
)
# 调用LLM生成回答
response_text = self.llm.complete(prompt).text
# 格式化回答
formatted_response = self.formatting_func(response_text)
return Response(
response=formatted_response,
source_nodes=nodes
)
def _merge_context(self, nodes):
"""合并上下文信息"""
context_parts = []
for node in nodes:
# 添加节点文本和元数据
part = f"内容:{node.node.text}"
if node.node.metadata:
meta_str = ", ".join([f"{k}:{v}" for k, v in node.node.metadata.items()])
part += f"\n元数据:{meta_str}"
context_parts.append(part)
return "\n\n".join(context_parts)
async def asynthesize(self, query_bundle, nodes, **kwargs):
"""异步合成实现"""
context_str = self._merge_context(nodes)
prompt = self.custom_prompt_template.format(
context_str=context_str,
query_str=query_bundle.query_str
)
response_text = (await self.llm.acomplete(prompt)).text
formatted_response = self.formatting_func(response_text)
return Response(
response=formatted_response,
source_nodes=nodes
)
# 使用自定义响应合成器
from llama_index.core import Settings
custom_synthesizer = CustomResponseSynthesizer(Settings.llm)
query_engine = index.as_query_engine(response_synthesizer=custom_synthesizer)
6.2 基于结构化输出的合成器
class StructuredResponseSynthesizer(BaseSynthesizer):
"""结构化响应合成器"""
def __init__(self, llm, output_format="json"):
self.llm = llm
self.output_format = output_format
super().__init__()
def synthesize(self, query_bundle, nodes, **kwargs):
"""生成结构化响应"""
# 合并上下文
context_str = self._merge_context(nodes)
# 根据输出格式构建提示词
if self.output_format == "json":
prompt = self._build_json_prompt(context_str, query_bundle.query_str)
elif self.output_format == "xml":
prompt = self._build_xml_prompt(context_str, query_bundle.query_str)
else:
prompt = self._build_yaml_prompt(context_str, query_bundle.query_str)
# 生成响应
response_text = self.llm.complete(prompt).text
# 解析结构化响应
structured_response = self._parse_structured_response(response_text)
return Response(
response=structured_response,
source_nodes=nodes
)
def _build_json_prompt(self, context_str, query_str):
"""构建JSON格式提示词"""
return f"""
基于以下信息回答问题,并以严格的JSON格式返回结果:
信息:
{context_str}
问题:
{query_str}
要求:
1. 必须返回有效的JSON格式
2. 包含answer, confidence, sources字段
3. 使用中文回答
返回格式示例:
{{
"answer": "回答内容",
"confidence": 0.95,
"sources": ["来源1", "来源2"]
}}
JSON结果:
"""
def _build_xml_prompt(self, context_str, query_str):
"""构建XML格式提示词"""
return f"""
基于以下信息回答问题,并以严格的XML格式返回结果:
信息:
{context_str}
问题:
{query_str}
要求:
1. 必须返回有效的XML格式
2. 包含answer, confidence, sources元素
3. 使用中文回答
返回格式示例:
<response>
<answer>回答内容</answer>
<confidence>0.95</confidence>
<sources>
<source>来源1</source>
<source>来源2</source>
</sources>
</response>
XML结果:
"""
def _build_yaml_prompt(self, context_str, query_str):
"""构建YAML格式提示词"""
return f"""
基于以下信息回答问题,并以严格的YAML格式返回结果:
信息:
{context_str}
问题:
{query_str}
要求:
1. 必须返回有效的YAML格式
2. 包含answer, confidence, sources字段
3. 使用中文回答
返回格式示例:
answer: 回答内容
confidence: 0.95
sources:
- 来源1
- 来源2
YAML结果:
"""
def _merge_context(self, nodes):
"""合并上下文信息"""
context_parts = []
for i, node in enumerate(nodes):
part = f"文档{i+1}:{node.node.text[:500]}..." # 限制长度
context_parts.append(part)
return "\n\n".join(context_parts)
def _parse_structured_response(self, response_text):
"""解析结构化响应"""
try:
if self.output_format == "json":
import json
return json.loads(response_text)
elif self.output_format == "xml":
import xml.etree.ElementTree as ET
root = ET.fromstring(response_text)
result = {}
for child in root:
if child.tag == "sources":
result[child.tag] = [source.text for source in child]
else:
result[child.tag] = child.text
return result
else: # yaml
import yaml
return yaml.safe_load(response_text)
except Exception as e:
# 解析失败时返回原始文本
return {"error": f"解析失败: {str(e)}", "raw_response": response_text}
# 使用结构化响应合成器
# json_synthesizer = StructuredResponseSynthesizer(Settings.llm, output_format="json")
# query_engine = index.as_query_engine(response_synthesizer=json_synthesizer)
7. 实际应用案例
7.1 多语言响应合成器
class MultilingualResponseSynthesizer(BaseSynthesizer):
"""多语言响应合成器"""
def __init__(self, llm, language_detector=None):
self.llm = llm
self.language_detector = language_detector or self._default_language_detector()
self.language_prompts = self._init_language_prompts()
super().__init__()
def _default_language_detector(self):
"""默认语言检测器"""
def detector(text):
# 简化的语言检测
import re
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
english_chars = len(re.findall(r'[a-zA-Z]', text))
if chinese_chars > english_chars:
return "zh"
else:
return "en"
return detector
def _init_language_prompts(self):
"""初始化多语言提示词"""
return {
"zh": {
"qa": "请基于以下信息用中文回答问题:\n信息:{context_str}\n问题:{query_str}\n回答:",
"summary": "请用中文总结以下信息:\n{context_str}\n总结:"
},
"en": {
"qa": "Please answer the question in English based on the following information:\nInformation: {context_str}\nQuestion: {query_str}\nAnswer:",
"summary": "Please summarize the following information in English:\n{context_str}\nSummary:"
},
"ja": {
"qa": "以下の情報に基づいて日本語で質問に答えてください:\n情報:{context_str}\n質問:{query_str}\n回答:",
"summary": "以下の情報を日本語で要約してください:\n{context_str}\n要約:"
}
}
def synthesize(self, query_bundle, nodes, **kwargs):
"""多语言合成"""
# 检测查询语言
query_language = self.language_detector(query_bundle.query_str)
# 如果需要,检测期望的回答语言
target_language = kwargs.get("target_language", query_language)
# 合并上下文
context_str = self._merge_context(nodes)
# 选择合适的提示词
prompt_template = self.language_prompts.get(
target_language,
self.language_prompts["en"]
)["qa"]
# 构建提示词
prompt = prompt_template.format(
context_str=context_str,
query_str=query_bundle.query_str
)
# 生成响应
response_text = self.llm.complete(prompt).text
# 如果需要翻译
if target_language != query_language:
response_text = self._translate_response(
response_text, query_language, target_language
)
return Response(
response=response_text,
source_nodes=nodes
)
def _merge_context(self, nodes):
"""合并上下文"""
# 根据节点的语言属性合并
chinese_contexts = []
english_contexts = []
for node in nodes:
node_text = node.node.text
node_language = self.language_detector(node_text)
if node_language == "zh":
chinese_contexts.append(node_text)
else:
english_contexts.append(node_text)
# 优先使用与查询语言相同的上下文
if len(chinese_contexts) > len(english_contexts):
return "\n\n".join(chinese_contexts[:3]) # 限制数量
else:
return "\n\n".join(english_contexts[:3])
def _translate_response(self, text, source_lang, target_lang):
"""翻译响应"""
# 简化实现,实际应用中可以调用翻译API
if source_lang == "zh" and target_lang == "en":
return f"[Translated from Chinese] {text}"
elif source_lang == "en" and target_lang == "zh":
return f"[翻译自英文] {text}"
else:
return text # 无法翻译时返回原文
# 使用多语言响应合成器
# multilingual_synthesizer = MultilingualResponseSynthesizer(Settings.llm)
# query_engine = index.as_query_engine(response_synthesizer=multilingual_synthesizer)
7.2 专业领域响应合成器
class DomainSpecificResponseSynthesizer(BaseSynthesizer):
"""专业领域响应合成器"""
def __init__(self, llm, domain="general"):
self.llm = llm
self.domain = domain
self.domain_configs = self._init_domain_configs()
super().__init__()
def _init_domain_configs(self):
"""初始化领域配置"""
return {
"medical": {
"prompt_template": (
"您是一名医学专家,请基于以下医学文献回答问题:\n\n"
"文献信息:{context_str}\n\n"
"问题:{query_str}\n\n"
"要求:\n"
"1. 回答必须基于提供的文献信息\n"
"2. 使用专业医学术语\n"
"3. 如信息不足,请明确说明\n"
"4. 必要时提供参考文献\n\n"
"专业回答:"
),
"confidence_threshold": 0.8,
"citation_required": True
},
"legal": {
"prompt_template": (
"您是一名法律专家,请基于以下法律条文和案例回答问题:\n\n"
"法律信息:{context_str}\n\n"
"问题:{query_str}\n\n"
"要求:\n"
"1. 引用相关法律条文\n"
"2. 分析法律适用性\n"
"3. 保持客观中立\n"
"4. 如不确定,请说明\n\n"
"法律分析:"
),
"confidence_threshold": 0.9,
"citation_required": True
},
"technical": {
"prompt_template": (
"您是一名技术专家,请基于以下技术文档回答问题:\n\n"
"技术信息:{context_str}\n\n"
"问题:{query_str}\n\n"
"要求:\n"
"1. 提供准确的技术细节\n"
"2. 包含必要的代码示例\n"
"3. 说明实现步骤\n"
"4. 指出注意事项\n\n"
"技术解答:"
),
"confidence_threshold": 0.7,
"citation_required": False
},
"general": {
"prompt_template": (
"请基于以下信息回答问题:\n\n"
"信息:{context_str}\n\n"
"问题:{query_str}\n\n"
"回答:"
),
"confidence_threshold": 0.5,
"citation_required": False
}
}
def synthesize(self, query_bundle, nodes, **kwargs):
"""领域特定合成"""
# 获取领域配置
domain_config = self.domain_configs.get(self.domain, self.domain_configs["general"])
# 合并上下文
context_str = self._merge_context(nodes)
# 构建提示词
prompt = domain_config["prompt_template"].format(
context_str=context_str,
query_str=query_bundle.query_str
)
# 生成响应
response_text = self.llm.complete(prompt).text
# 后处理
processed_response = self._postprocess_response(
response_text, nodes, domain_config
)
return Response(
response=processed_response,
source_nodes=nodes
)
def _merge_context(self, nodes):
"""合并上下文"""
# 根据领域特点合并上下文
if self.domain == "medical":
# 医学领域优先合并最新的研究文献
sorted_nodes = sorted(
nodes,
key=lambda x: x.node.metadata.get("publication_date", ""),
reverse=True
)
return "\n\n".join([node.node.text[:800] for node in sorted_nodes[:5]])
elif self.domain == "legal":
# 法律领域优先合并权威的法律条文
return "\n\n".join([node.node.text[:1000] for node in nodes[:3]])
else:
# 其他领域合并所有相关信息
return "\n\n".join([node.node.text[:500] for node in nodes[:5]])
def _postprocess_response(self, response_text, nodes, domain_config):
"""后处理响应"""
processed_text = response_text
# 如果需要引用,则添加引用信息
if domain_config["citation_required"]:
citations = self._generate_citations(nodes)
if citations:
processed_text += f"\n\n参考资料:\n{citations}"
# 添加置信度信息
confidence = self._calculate_confidence(response_text, nodes)
if confidence < domain_config["confidence_threshold"]:
processed_text += f"\n\n[置信度较低:{confidence:.2f},建议进一步核实]"
return processed_text
def _generate_citations(self, nodes):
"""生成引用信息"""
citations = []
for i, node in enumerate(nodes[:5]): # 最多引用前5个来源
source = node.node.metadata.get("source", "未知来源")
citations.append(f"[{i+1}] {source}")
return "\n".join(citations)
def _calculate_confidence(self, response_text, nodes):
"""计算响应置信度"""
# 简化的置信度计算
# 基于节点相关性和响应长度
avg_node_score = sum(node.score for node in nodes) / len(nodes) if nodes else 0
response_length_factor = min(1.0, len(response_text) / 500.0)
confidence = (avg_node_score + response_length_factor) / 2
return min(1.0, confidence)
# 使用专业领域响应合成器
# medical_synthesizer = DomainSpecificResponseSynthesizer(Settings.llm, domain="medical")
# query_engine = index.as_query_engine(response_synthesizer=medical_synthesizer)
7.3 交互式响应合成器
class InteractiveResponseSynthesizer(BaseSynthesizer):
"""交互式响应合成器"""
def __init__(self, llm, user_feedback_handler=None):
self.llm = llm
self.user_feedback_handler = user_feedback_handler or self._default_feedback_handler()
self.conversation_history = []
super().__init__()
def _default_feedback_handler(self):
"""默认反馈处理器"""
def handler(feedback, response):
# 简化的反馈处理
print(f"收到反馈:{feedback}")
return {"acknowledged": True}
return handler
def synthesize(self, query_bundle, nodes, **kwargs):
"""交互式合成"""
# 添加到对话历史
self.conversation_history.append({
"type": "query",
"content": query_bundle.query_str,
"timestamp": self._get_timestamp()
})
# 合并上下文
context_str = self._merge_context(nodes)
# 构建交互式提示词
prompt = self._build_interactive_prompt(
context_str,
query_bundle.query_str,
self.conversation_history
)
# 生成响应
response_text = self.llm.complete(prompt).text
# 添加响应到历史
self.conversation_history.append({
"type": "response",
"content": response_text,
"timestamp": self._get_timestamp()
})
# 构建交互式响应
interactive_response = self._build_interactive_response(
response_text, nodes
)
return Response(
response=interactive_response,
source_nodes=nodes
)
def _merge_context(self, nodes):
"""合并上下文"""
# 根据节点相关性排序
sorted_nodes = sorted(nodes, key=lambda x: x.score, reverse=True)
return "\n\n".join([f"[相关度: {node.score:.2f}] {node.node.text[:300]}"
for node in sorted_nodes[:5]])
def _build_interactive_prompt(self, context_str, query_str, history):
"""构建交互式提示词"""
# 构建对话历史
history_str = "\n".join([
f"{item['type'].upper()}: {item['content']}"
for item in history[-5:] # 最近5轮对话
])
return f"""
您是一个智能助手,请基于以下信息和对话历史回答用户问题:
相关信息:
{context_str}
对话历史:
{history_str}
当前问题:
{query_str}
要求:
1. 回答要准确、简洁
2. 可以提出进一步的问题以澄清用户需求
3. 如果需要更多信息,可以询问用户
4. 使用友好的语调
智能回答:
"""
def _build_interactive_response(self, response_text, nodes):
"""构建交互式响应"""
# 解析响应,检查是否包含交互元素
if "您是否想了解" in response_text or "您是否有其他问题" in response_text:
# 包含交互元素的响应
return {
"type": "interactive",
"content": response_text,
"suggestions": self._extract_suggestions(response_text),
"follow_up": self._generate_follow_up_questions(nodes)
}
else:
# 普通响应
return {
"type": "standard",
"content": response_text
}
def _extract_suggestions(self, response_text):
"""提取建议"""
# 简化的建议提取
suggestions = []
if "您是否想了解" in response_text:
suggestions.append("了解更多相关主题")
if "您可以查看" in response_text:
suggestions.append("查看详细资料")
return suggestions
def _generate_follow_up_questions(self, nodes):
"""生成后续问题"""
# 基于节点内容生成后续问题
follow_ups = []
for node in nodes[:2]: # 基于前2个节点
# 简化的后续问题生成
topic = node.node.metadata.get("topic", "相关主题")
follow_ups.append(f"关于{topic},您还有什么想了解的吗?")
return follow_ups
def _get_timestamp(self):
"""获取时间戳"""
from datetime import datetime
return datetime.now().isoformat()
def handle_user_feedback(self, feedback, response):
"""处理用户反馈"""
return self.user_feedback_handler(feedback, response)
# 使用交互式响应合成器
# interactive_synthesizer = InteractiveResponseSynthesizer(Settings.llm)
# query_engine = index.as_query_engine(response_synthesizer=interactive_synthesizer)
8. 性能优化策略
8.1 缓存机制
from functools import lru_cache
import hashlib
class CachedResponseSynthesizer(BaseSynthesizer):
"""带缓存的响应合成器"""
def __init__(self, base_synthesizer, cache_size=100):
self.base_synthesizer = base_synthesizer
self.cache_size = cache_size
self._response_cache = {}
super().__init__()
def synthesize(self, query_bundle, nodes, **kwargs):
"""带缓存的合成"""
# 生成缓存键
cache_key = self._generate_cache_key(query_bundle, nodes)
# 检查缓存
if cache_key in self._response_cache:
print("从缓存返回响应")
return self._response_cache[cache_key]
# 执行实际合成
response = self.base_synthesizer.synthesize(query_bundle, nodes, **kwargs)
# 存储到缓存
self._response_cache[cache_key] = response
# 限制缓存大小
if len(self._response_cache) > self.cache_size:
# 移除最旧的项
oldest_key = next(iter(self._response_cache))
del self._response_cache[oldest_key]
return response
def _generate_cache_key(self, query_bundle, nodes):
"""生成缓存键"""
# 基于查询和节点信息生成哈希键
key_data = {
"query": query_bundle.query_str,
"node_ids": [node.node.node_id for node in nodes],
"node_scores": [node.score for node in nodes]
}
key_string = str(sorted(key_data.items()))
return hashlib.md5(key_string.encode()).hexdigest()
async def asynthesize(self, query_bundle, nodes, **kwargs):
"""异步缓存合成"""
cache_key = self._generate_cache_key(query_bundle, nodes)
if cache_key in self._response_cache:
print("从缓存返回响应(异步)")
return self._response_cache[cache_key]
response = await self.base_synthesizer.asynthesize(query_bundle, nodes, **kwargs)
self._response_cache[cache_key] = response
if len(self._response_cache) > self.cache_size:
oldest_key = next(iter(self._response_cache))
del self._response_cache[oldest_key]
return response
# 使用缓存响应合成器
# cached_synthesizer = CachedResponseSynthesizer(
# base_synthesizer=original_synthesizer,
# cache_size=50
# )
# query_engine = index.as_query_engine(response_synthesizer=cached_synthesizer)
8.2 流式响应处理
class StreamingResponseSynthesizer(BaseSynthesizer):
"""流式响应合成器"""
def __init__(self, base_synthesizer):
self.base_synthesizer = base_synthesizer
super().__init__()
def synthesize(self, query_bundle, nodes, **kwargs):
"""同步合成(不支持流式)"""
return self.base_synthesizer.synthesize(query_bundle, nodes, **kwargs)
async def asynthesize(self, query_bundle, nodes, **kwargs):
"""异步流式合成"""
# 启用流式处理
kwargs["streaming"] = True
# 使用基础合成器的异步方法
response = await self.base_synthesizer.asynthesize(query_bundle, nodes, **kwargs)
# 如果响应支持流式处理,则返回流式响应
if hasattr(response, 'async_response_gen'):
return StreamingResponse(response.async_response_gen)
else:
return response
class StreamingResponse:
"""流式响应类"""
def __init__(self, response_generator):
self.response_generator = response_generator
async def async_read(self):
"""异步读取响应"""
full_response = ""
async for chunk in self.response_generator:
full_response += chunk
yield chunk
return full_response
def __str__(self):
return "StreamingResponse object"
# 使用流式响应合成器
# streaming_synthesizer = StreamingResponseSynthesizer(base_synthesizer)
# query_engine = index.as_query_engine(
# response_synthesizer=streaming_synthesizer,
# streaming=True
# )
9. 故障排除和最佳实践
9.1 常见问题及解决方案
-
生成响应质量不佳:
class QualityEnhancedResponseSynthesizer(BaseSynthesizer): """质量增强响应合成器""" def __init__(self, llm, quality_checker=None): self.llm = llm self.quality_checker = quality_checker or self._default_quality_checker() super().__init__() def _default_quality_checker(self): """默认质量检查器""" def checker(response_text, nodes): issues = [] # 检查响应长度 if len(response_text) < 50: issues.append("响应过短") # 检查是否基于上下文 context_words = set() for node in nodes: context_words.update(node.node.text.lower().split()) response_words = set(response_text.lower().split()) overlap = len(context_words.intersection(response_words)) if overlap < 3: # 至少应有3个关键词重叠 issues.append("可能未充分使用上下文信息") # 检查是否回答了问题 if "不知道" in response_text or "不确定" in response_text: issues.append("响应缺乏确定性") return issues return checker def synthesize(self, query_bundle, nodes, **kwargs): """质量增强合成""" # 首次生成 response = self._generate_initial_response(query_bundle, nodes) # 检查质量 quality_issues = self.quality_checker(response.response, nodes) # 如果有问题,尝试改进 if quality_issues: print(f"检测到质量问题:{quality_issues},正在尝试改进...") response = self._improve_response(response, query_bundle, nodes, quality_issues) return response def _generate_initial_response(self, query_bundle, nodes): """生成初始响应""" context_str = "\n\n".join([node.node.text[:500] for node in nodes[:5]]) prompt = f""" 请基于以下信息详细回答问题: 信息: {context_str} 问题: {query_bundle.query_str} 要求: 1. 回答必须基于提供的信息 2. 回答详细完整 3. 使用中文 4. 条理清晰 详细回答: """ response_text = self.llm.complete(prompt).text return Response( response=response_text, source_nodes=nodes ) def _improve_response(self, response, query_bundle, nodes, issues): """改进响应""" context_str = "\n\n".join([node.node.text[:500] for node in nodes[:5]]) improvement_prompt = f""" 以下回答存在一些问题:{', '.join(issues)} 原始信息: {context_str} 原始问题: {query_bundle.query_str} 不够好的回答: {response.response} 请提供一个改进的、高质量的回答,要求: 1. 解决上述问题 2. 回答更加详细和准确 3. 基于提供的信息 4. 使用中文 改进的回答: """ improved_text = self.llm.complete(improvement_prompt).text return Response( response=improved_text, source_nodes=nodes ) # 使用质量增强响应合成器 # quality_synthesizer = QualityEnhancedResponseSynthesizer(Settings.llm) # query_engine = index.as_query_engine(response_synthesizer=quality_synthesizer) -
响应生成时间过长:
import asyncio import time class TimeoutAwareResponseSynthesizer(BaseSynthesizer): """超时感知响应合成器""" def __init__(self, base_synthesizer, timeout=10.0): self.base_synthesizer = base_synthesizer self.timeout = timeout super().__init__() async def asynthesize(self, query_bundle, nodes, **kwargs): """带超时的异步合成""" try: # 创建超时任务 response_task = asyncio.create_task( self.base_synthesizer.asynthesize(query_bundle, nodes, **kwargs) ) # 等待响应或超时 response = await asyncio.wait_for(response_task, timeout=self.timeout) return response except asyncio.TimeoutError: print(f"响应生成超时({self.timeout}秒),返回简化回答...") return self._generate_timeout_response(query_bundle) except Exception as e: print(f"响应生成出错:{str(e)}") return self._generate_error_response(query_bundle, str(e)) def _generate_timeout_response(self, query_bundle): """生成超时响应""" timeout_response = f""" 抱歉,问题"{query_bundle.query_str}"需要更多时间来处理。 请尝试: 1. 简化问题 2. 稍后再试 3. 联系系统管理员 """ return Response( response=timeout_response, source_nodes=[] ) def _generate_error_response(self, query_bundle, error_msg): """生成错误响应""" error_response = f""" 处理问题"{query_bundle.query_str}"时发生错误: {error_msg} 建议: 1. 检查问题表述 2. 稍后再试 3. 联系技术支持 """ return Response( response=error_response, source_nodes=[] ) # 使用超时感知响应合成器 # timeout_synthesizer = TimeoutAwareResponseSynthesizer( # base_synthesizer=original_synthesizer, # timeout=5.0 # ) # query_engine = index.as_query_engine(response_synthesizer=timeout_synthesizer)
9.2 最佳实践建议
-
合理选择响应模式:
def select_optimal_response_mode(doc_length, node_count, query_type): """选择最优响应模式""" if doc_length < 1000 and node_count < 5: # 短文档,少量节点 return ResponseMode.COMPACT elif doc_length < 5000 and node_count < 10: # 中等文档,中等节点数 return ResponseMode.COMPACT_AND_REFINE elif node_count < 20: # 节点数适中 return ResponseMode.REFINE else: # 大量节点 return ResponseMode.TREE_SUMMARIZE # 使用示例 # optimal_mode = select_optimal_response_mode( # doc_length=3000, # node_count=15, # query_type="analytical" # ) # query_engine = index.as_query_engine(response_mode=optimal_mode) -
监控和日志记录:
import logging import time class MonitoredResponseSynthesizer(BaseSynthesizer): """监控响应合成器""" def __init__(self, base_synthesizer, logger_name="ResponseSynthesizer"): self.base_synthesizer = base_synthesizer self.logger = logging.getLogger(logger_name) self.stats = { "total_responses": 0, "total_time": 0.0, "avg_time": 0.0 } super().__init__() def synthesize(self, query_bundle, nodes, **kwargs): """带监控的合成""" start_time = time.time() self.stats["total_responses"] += 1 try: response = self.base_synthesizer.synthesize(query_bundle, nodes, **kwargs) elapsed_time = time.time() - start_time self.stats["total_time"] += elapsed_time self.stats["avg_time"] = self.stats["total_time"] / self.stats["total_responses"] self.logger.info( f"响应生成成功 | 查询: {query_bundle.query_str[:30]}... | " f"节点数: {len(nodes)} | 耗时: {elapsed_time:.3f}s" ) return response except Exception as e: elapsed_time = time.time() - start_time self.logger.error( f"响应生成失败 | 查询: {query_bundle.query_str[:30]}... | " f"耗时: {elapsed_time:.3f}s | 错误: {str(e)}" ) raise async def asynthesize(self, query_bundle, nodes, **kwargs): """异步监控合成""" start_time = time.time() self.stats["total_responses"] += 1 try: response = await self.base_synthesizer.asynthesize(query_bundle, nodes, **kwargs) elapsed_time = time.time() - start_time self.stats["total_time"] += elapsed_time self.stats["avg_time"] = self.stats["total_time"] / self.stats["total_responses"] self.logger.info( f"异步响应生成成功 | 查询: {query_bundle.query_str[:30]}... | " f"节点数: {len(nodes)} | 耗时: {elapsed_time:.3f}s" ) return response except Exception as e: elapsed_time = time.time() - start_time self.logger.error( f"异步响应生成失败 | 查询: {query_bundle.query_str[:30]}... | " f"耗时: {elapsed_time:.3f}s | 错误: {str(e)}" ) raise def get_stats(self): """获取统计信息""" return self.stats # 配置日志 logging.basicConfig(level=logging.INFO) # 使用监控响应合成器 # monitored_synthesizer = MonitoredResponseSynthesizer(base_synthesizer) # query_engine = index.as_query_engine(response_synthesizer=monitored_synthesizer)
10. 高级功能探索
10.1 多模态响应合成器
class MultimodalResponseSynthesizer(BaseSynthesizer):
"""多模态响应合成器"""
def __init__(self, llm, image_processor=None):
self.llm = llm
self.image_processor = image_processor
super().__init__()
def synthesize(self, query_bundle, nodes, **kwargs):
"""多模态合成"""
# 分离文本节点和图像节点
text_nodes = []
image_nodes = []
for node in nodes:
if hasattr(node.node, 'image'):
image_nodes.append(node)
else:
text_nodes.append(node)
# 合成响应
if image_nodes:
response = self._synthesize_with_images(
query_bundle, text_nodes, image_nodes
)
else:
response = self._synthesize_text_only(
query_bundle, text_nodes
)
return response
def _synthesize_text_only(self, query_bundle, nodes):
"""纯文本合成"""
context_str = "\n\n".join([node.node.text[:500] for node in nodes[:5]])
prompt = f"""
请基于以下信息回答问题:
信息:
{context_str}
问题:
{query_bundle.query_str}
回答:
"""
response_text = self.llm.complete(prompt).text
return Response(
response=response_text,
source_nodes=nodes
)
def _synthesize_with_images(self, query_bundle, text_nodes, image_nodes):
"""带图像合成"""
# 处理文本信息
text_context = "\n\n".join([node.node.text[:300] for node in text_nodes[:3]])
# 处理图像信息(简化处理)
image_descriptions = []
for i, node in enumerate(image_nodes[:3]):
if hasattr(node.node, 'image_description'):
image_descriptions.append(f"图{i+1}: {node.node.image_description}")
else:
image_descriptions.append(f"图{i+1}: [图像]")
# 构建多模态提示词
prompt = f"""
请基于以下文本和图像信息回答问题:
文本信息:
{text_context}
图像信息:
{'; '.join(image_descriptions)}
问题:
{query_bundle.query_str}
回答(请结合文本和图像信息):
"""
response_text = self.llm.complete(prompt).text
# 构建多模态响应
multimodal_response = {
"text": response_text,
"images": [node.node.image for node in image_nodes[:3]],
"image_descriptions": image_descriptions
}
return Response(
response=multimodal_response,
source_nodes=text_nodes + image_nodes
)
# 使用多模态响应合成器(概念性)
# multimodal_synthesizer = MultimodalResponseSynthesizer(Settings.llm)
# query_engine = index.as_query_engine(response_synthesizer=multimodal_synthesizer)
10.2 自适应响应合成器
class AdaptiveResponseSynthesizer(BaseSynthesizer):
"""自适应响应合成器"""
def __init__(self, llm, adaptation_strategy=None):
self.llm = llm
self.adaptation_strategy = adaptation_strategy or self._default_adaptation_strategy()
self.feedback_history = []
super().__init__()
def _default_adaptation_strategy(self):
"""默认适应策略"""
def strategy(query_bundle, nodes, feedback_history):
# 基于反馈历史和查询特点选择策略
if len(feedback_history) > 5:
# 有足够的反馈历史
positive_feedback_rate = sum(
1 for fb in feedback_history[-10:] if fb.get("rating", 0) > 3
) / min(10, len(feedback_history))
if positive_feedback_rate < 0.5:
# 反馈较差,使用更详细的模式
return "detailed"
# 基于查询长度选择
if len(query_bundle.query_str) > 50:
return "comprehensive"
else:
return "concise"
return strategy
def synthesize(self, query_bundle, nodes, **kwargs):
"""自适应合成"""
# 确定适应策略
strategy = self.adaptation_strategy(query_bundle, nodes, self.feedback_history)
# 根据策略合成响应
if strategy == "detailed":
response = self._synthesize_detailed(query_bundle, nodes)
elif strategy == "comprehensive":
response = self._synthesize_comprehensive(query_bundle, nodes)
else: # concise
response = self._synthesize_concise(query_bundle, nodes)
return response
def _synthesize_detailed(self, query_bundle, nodes):
"""详细合成"""
context_str = "\n\n".join([
f"[相关度: {node.score:.2f}] {node.node.text[:400]}"
for node in sorted(nodes, key=lambda x: x.score, reverse=True)[:5]
])
prompt = f"""
请提供一个非常详细和全面的回答,基于以下信息:
详细信息:
{context_str}
具体问题:
{query_bundle.query_str}
要求:
1. 提供背景信息
2. 详细解释每个要点
3. 提供示例和应用场景
4. 指出注意事项和限制
详细回答:
"""
response_text = self.llm.complete(prompt).text
return Response(
response=response_text,
source_nodes=nodes
)
def _synthesize_comprehensive(self, query_bundle, nodes):
"""全面合成"""
context_str = "\n\n".join([
node.node.text[:300]
for node in sorted(nodes, key=lambda x: x.score, reverse=True)[:4]
])
prompt = f"""
请提供一个全面但简洁的回答,基于以下信息:
信息:
{context_str}
问题:
{query_bundle.query_str}
要求:
1. 涵盖主要要点
2. 保持简洁明了
3. 提供关键细节
4. 结构清晰
全面回答:
"""
response_text = self.llm.complete(prompt).text
return Response(
response=response_text,
source_nodes=nodes
)
def _synthesize_concise(self, query_bundle, nodes):
"""简洁合成"""
context_str = "\n\n".join([
node.node.text[:200]
for node in sorted(nodes, key=lambda x: x.score, reverse=True)[:3]
])
prompt = f"""
请提供一个简洁明了的回答,基于以下信息:
信息:
{context_str}
问题:
{query_bundle.query_str}
简洁回答:
"""
response_text = self.llm.complete(prompt).text
return Response(
response=response_text,
source_nodes=nodes
)
def record_feedback(self, response, feedback):
"""记录反馈"""
self.feedback_history.append({
"response": str(response),
"feedback": feedback,
"timestamp": self._get_timestamp()
})
# 保持反馈历史在合理范围内
if len(self.feedback_history) > 100:
self.feedback_history = self.feedback_history[-50:]
def _get_timestamp(self):
"""获取时间戳"""
from datetime import datetime
return datetime.now().isoformat()
# 使用自适应响应合成器
# adaptive_synthesizer = AdaptiveResponseSynthesizer(Settings.llm)
# query_engine = index.as_query_engine(response_synthesizer=adaptive_synthesizer)
总结
ResponseSynthesizer作为LlamaIndex中负责将检索信息合成为最终回答的核心组件,在整个RAG流程中扮演着至关重要的角色。通过本文的详细介绍,我们深入了解了ResponseSynthesizer的工作原理、内置类型、配置选项以及在实际应用中的使用方法。
ResponseSynthesizer的主要优势包括:
- 专业化合成:专注于信息合成和回答生成,提供高质量的自然语言输出
- 模式多样化:支持Compact、Refine、TreeSummarize等多种合成模式
- 高度可配置:提供丰富的配置选项和自定义能力
- 良好扩展性:支持自定义实现以满足特定需求
- 质量保障:通过多种机制确保生成答案的质量
在实际应用中,我们需要根据具体场景选择合适的ResponseSynthesizer类型和配置:
- 基础问答场景:使用内置的Compact或CompactAndRefine模式
- 复杂分析场景:使用TreeSummarize或Refine模式处理大量信息
- 专业领域应用:实现领域特定的响应合成器
- 多语言支持:实现多语言响应合成能力
- 交互式应用:实现支持用户反馈的交互式合成器
通过合理使用ResponseSynthesizer,我们可以构建出更加智能、高效的信息服务系统,显著提升用户获得答案的质量和满意度。随着大语言模型和响应合成技术的不断发展,ResponseSynthesizer将在更多领域发挥重要作用,成为构建高质量AI应用的核心组件。
1602

被折叠的 条评论
为什么被折叠?



