one special day-----20160913

山东广电新媒体概览
本文介绍了山东广电新媒体有限责任公司的相关信息,但具体内容未详细展开。原文链接来自ITPUB博客,并强调了转载需注明出处。
山东 广 电 新媒体有限责任公司

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31123655/viewspace-2124897/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/31123655/viewspace-2124897/

<think>我们正在处理的任务是:每天100次,每次下载100GB文件,压缩后上传到FTP服务器。使用阿里云ECS,海光CPU,网卡1500Mbps(理论速度187.5MB/s)。我们需要计算在压缩级别0(存储,不压缩)和级别9(最大压缩)两种情况下,所需的资源(主要是CPU核心数)和网络带宽是否足够,并基于TPC-C(事务处理性能委员会)的计算模型进行相关计算。 注意:TPC-C通常用于数据库事务处理性能测试,但这里我们主要关注的是计算资源和网络带宽的消耗,因此我们将使用类似的计算思路(即分解每个任务的时间消耗,计算并发需求等)来评估。 根据之前分析的两个压缩级别的情况: 一、压缩级别0(不压缩) - 不进行压缩,所以压缩时间忽略(但打包可能需要很少的时间,这里忽略不计) - 每次任务需要下载100GB和上传100GB(因为不压缩,文件大小不变) - 总传输量:100次 * (100GB下载+100GB上传) = 20000GB = 20TB - 网络带宽:1500Mbps = 187.5MB/s - 一天总时间:86400秒 - 网络带宽一天最大传输量:187.5 * 86400 / 1024 ≈ 15750GB ≈ 15.75TB(注意:1GB=1024MB,1TB=1024GB) - 15.75TB < 20TB,因此网络带宽不足。 二、压缩级别9(最大压缩) - 假设压缩比为3:1(即压缩后文件大小约为33.3GB) - 每次任务:下载100GB + 上传33.3GB = 133.3GB - 总传输量:100 * 133.3GB = 13330GB ≈ 13.33TB - 网络带宽一天最大传输量15.75TB > 13.33TB,因此网络带宽足够。 - 压缩速度:假设海光CPU单核压缩速度为100MB/s(级别9压缩较慢,此值为经验值) - 压缩100GB需要时间:100 * 1024 MB / 100 MB/s = 1024秒(单核) - 下载时间:100GB / 187.5MB/s = (100*1024) / 187.5 ≈ 546秒 - 上传时间:33.3GB / 187.5MB/s ≈ (33.3*1024) / 187.5 ≈ 182秒 - 单任务总时间(串行):546(下载)+1024(压缩)+182(上传)= 1752秒 但是,我们不可能让100个任务串行执行,因为1752*100秒远大于86400秒。因此需要并行执行。 并行任务数:假设同时执行n个任务,那么每个任务占用一个CPU核心(若使用单线程压缩工具)。同时,网络带宽是共享的,但考虑到每个任务的下载和上传是分开的,且整个过程中网络使用并不是完全重叠,为了简化,我们假设网络带宽可以被多个任务共享,只要总带宽不超过1500Mbps。同样,我们假设磁盘I/O不是瓶颈(使用阿里云ESSD云盘)。 首先,我们考虑CPU瓶颈: - 每个任务在压缩阶段需要连续使用一个核心1024秒(因为压缩是CPU密集型,且我们假设单线程压缩)。 - 一天内CPU总工作量(核心*秒):100任务 * 1024秒 = 102400核心·秒。 - 一天总时间86400秒,所以需要的最小核心数:102400 / 86400 ≈ 1.185,即至少需要2个核心(因为核心数必须为整数,且要满足峰值需求)。 但是,这仅仅是压缩所需的CPU时间,并没有考虑任务之间的时间重叠。实际上,由于每个任务还有下载和上传时间,这些时间可以重叠(即一个任务在下载时,另一个任务可能在上传,另一个在压缩),但压缩阶段必须占用一个核心。 我们需要模拟并发执行,使得在一天内完成100个任务。每个任务从开始下载到完成上传需要1752秒,但我们可以通过并行来缩短总时间。 如果我们有m个核心,那么同时最多可以有m个任务在压缩(假设下载和上传不占用CPU,但占用网络)。同时,网络带宽是共享的,所以我们需要确保同时进行的下载和上传任务所占用的总带宽不超过1500Mbps。 下面我们分别计算压缩级别0和9的详细情况,并基于类似TPC-C的模型计算所需资源。 由于TPC-C是一个事务处理性能基准,它衡量的是系统每分钟事务处理能力(tpmC)。但我们的场景更像是批处理作业,因此我们将关注点放在每个任务的资源需求以及系统整体吞吐量上。 目标:每天完成100个任务。 我们将每个任务分解为三个阶段(下载、压缩、上传),并考虑这些阶段是否可以并行(任务内阶段不能并行,但多个任务之间可以并行)。 一、压缩级别0(存储) 每个任务: - 下载时间:T_down = (100*1024) / 187.5 ≈ 546秒 - 压缩时间:几乎为0(忽略) - 上传时间:T_up = (100*1024) / 187.5 ≈ 546秒 - 总时间:546+546=1092秒(忽略其他时间) 由于没有压缩,CPU需求极低(1核即可处理多个任务)。 瓶颈:网络带宽。网络带宽需要同时支持下载和上传。由于下载和上传可以同时进行,但总带宽是1500Mbps。 在压缩级别0的情况下,每个任务需要: - 下载占用带宽:100GB在546秒内完成,平均占用带宽 = (100*1024*8) / 546 ≈ 1500Mbps(实际上已经占满整个带宽)?计算如下: 100GB = 100 * 1024 * 8 = 819200 Mb 下载时间546秒,所以下载带宽 = 819200 / 546 ≈ 1500Mbps(正好是网卡带宽)。这意味着在下载一个任务时,会占满整个带宽,此时无法进行其他下载或上传。 同样,上传也需要同样的带宽。因此,我们不能同时进行下载和上传?实际上,网络是全双工,但1500Mbps是双向总带宽还是单向?通常,网卡标称的带宽是双向的,即上下行共享带宽。所以,同时下载和上传会共享1500Mbps。 因此,在压缩级别0时,每个任务在下载时会占满带宽,上传时也会占满带宽。那么,同一时间只能有一个任务占用网络(无论是下载还是上传)。也就是说,任务只能串行执行:先下载一个任务(546秒),然后上传(546秒),再下一个任务。这样每个任务需要1092秒。 100个任务串行需要:100*1092 = 109200秒 ≈ 30.33小时 > 24小时(86400秒)。因此,无法完成。 解决方案:升级网络带宽。假设我们希望并行执行多个任务,那么需要多少带宽? 如果我们希望并行执行n个任务(每个任务内部串行:下载->上传),那么每个任务需要下载100GB和上传100GB,总共200GB。每个任务的平均带宽需求是200GB/1092秒 ≈ 0.183GB/s ≈ 1466.67Mbps。注意,这是每个任务的平均带宽需求,但实际执行中,任务在下载时占用带宽较高,上传时也较高。 如果我们让n个任务并行,那么每个任务在下载时需要1500Mbps(因为单个下载需要1500Mbps),这样n个任务同时下载就需要n*1500Mbps,显然不可能。因此,我们需要限制每个任务的下载和上传速度,使得总带宽不超过1500Mbps。 由于每个任务有下载和上传两个阶段,如果我们让多个任务交叉进行(即同时有任务在下载,也有任务在上传),那么总带宽使用为:同时进行的下载速度之和+同时进行的上传速度之和≤1500Mbps。 为了最大化利用带宽,我们希望总是有下载和上传在进行。假设我们同时启动n个任务,让它们的下载和上传阶段在时间上错开。但是,每个任务必须先下载完才能上传。因此,如果我们有足够的带宽,可以同时进行多个下载(但总带宽受限)和多个上传。 实际上,我们可以设置每个任务使用一定的带宽,比如每个任务分配x Mbps的下载带宽和y Mbps的上传带宽,但为了简化,我们假设所有任务平均共享带宽。那么每个任务获得的平均带宽为1500/n Mbps(包括下载和上传)。 由于每个任务需要传输200GB(下载100GB+上传100GB),所以每个任务需要的传输时间(包括下载和上传)为: T_trans = (100*1024*8) / (1500/n) * 2? 注意:实际上下载和上传可以同时进行,但每个任务内部,下载和上传是串行的,所以每个任务的总传输时间(下载+上传)应该是: 下载时间 = (100*1024*8) / (分配给该任务的下载带宽) 上传时间 = (100*1024*8) / (分配给该任务的上传带宽) 而总传输时间 = 下载时间 + 上传时间 但是,如果我们均分带宽,那么每个任务在整个生命周期中(从开始下载到完成上传)平均占用1500/n Mbps。但由于下载和上传是串行的,所以实际上在下载阶段,它占用带宽用于下载,在上传阶段占用带宽用于上传。那么,如果我们有n个任务同时进行,那么每个任务在下载阶段占用1500/n Mbps,在上传阶段占用1500/n Mbps。 那么,每个任务的传输时间(下载+上传)为: T_trans = (100*1024*8) / (1500/n) + (100*1024*8) / (1500/n) = 2 * (100*1024*8) * n / 1500 秒 同时,由于n个任务并行,我们希望所有任务在一天内完成100个,即n个任务同时运行,那么完成一批n个任务的时间为T_trans,然后接着下一批。所以批次数为100/n,总时间为 (100/n) * T_trans = (100/n) * [2*(100*1024*8)*n/1500] = 100 * 2 * (100*1024*8)/1500 秒 计算:100*2*100*1024*8/1500 = 100*2*819.2/1.5 = 100*2*546.133 ≈ 109226.67秒 > 86400秒 这个结果与n无关?说明无论并行多少个任务,总传输时间都是固定的?这是因为增加并行任务数虽然每个任务分配到的带宽变少,但并行任务数增加,所以总吞吐量不变(总带宽1500Mbps)。那么一天最大传输量为: 1500/8 * 86400 = 1500 * 10800 = 16,200,000 MB = 16,200,000 / 1024 ≈ 15820.3125 GB ≈ 15.45TB 而我们需要20TB,所以不够。 因此,压缩级别0需要升级带宽到至少:20000GB*1024 (MB/GB)*8 (b/B) / 86400 ≈ 20000*1024*8/86400 ≈ 1939.3 Mbps。所以至少需要2000Mbps。 此时,CPU需求:由于压缩级别0几乎不需要CPU,1核足够。 二、压缩级别9 每个任务: - 下载时间:100*1024 / 187.5 ≈ 546秒 - 压缩时间:100*1024 / 100 = 1024秒(单核) - 上传时间:33.3*1024 / 187.5 ≈ 33.3*1024/187.5 ≈ 182秒 - 总时间(串行):546+1024+182=1752秒 总传输量:100次*(100GB下载+33.3GB上传)=13330GB≈13.33TB < 15.75TB(一天网络传输能力),所以网络带宽足够。 但是,每个任务压缩阶段需要1024秒的CPU时间(单核)。100个任务需要总共102400核·秒。一天86400秒,所以需要102400/86400≈1.185核。但是,由于每个任务还有下载和上传时间,我们需要考虑如何安排并行。 假设我们有m个CPU核心,那么同时最多可以有m个任务在压缩(因为压缩是CPU密集型)。同时,网络带宽1500Mbps可以支持多个任务同时下载或上传。 由于下载和上传可以并行(不同任务之间),并且压缩不占用网络,所以我们可以让多个任务同时进行。 我们假设: - 下载和上传共享网络带宽,并且每个下载或上传任务都能占满分配给它的带宽(但总带宽不超过1500Mbps)。 - 压缩只占用CPU,不占用网络。 由于每个任务在下载和上传时需要的带宽: 下载100GB:需要带宽,上传33.3GB:需要带宽。 每个任务的总传输量133.3GB,但传输发生在不同的阶段。 为了简化,我们可以将整个系统视为两个部分:网络传输部分和CPU压缩部分。 网络传输部分需要完成的总工作量:下载10000GB(100个任务*100GB)和上传3330GB(100个任务*33.3GB),合计13330GB。网络带宽1500Mbps(187.5MB/s)一天传输能力为187.5*86400/1024≈15820.3125GB>13330GB,所以网络部分没有问题。 因此,瓶颈在CPU压缩部分。每个任务压缩需要1024秒的CPU时间,100个任务需要102400核·秒。一天86400秒,所以平均需要102400/86400≈1.185核。考虑到任务并行执行,我们需要至少2个核心(因为1个核心在一天只能提供86400秒的CPU时间,不够102400秒)。 那么,用2个核心,CPU总能力为2*86400=172800核·秒>102400核·秒,所以CPU足够。但我们需要考虑任务调度:两个核心可以同时压缩两个任务。 然而,每个任务还有下载和上传的时间,这些时间不会占用CPU,但会占用时间。我们需要确保在一天内能够完成100个任务。 由于每个任务的总耗时(从开始下载到完成上传)为1752秒,而压缩任务可以并行,下载和上传也可以并行(但受网络带宽限制)。由于网络带宽足够,我们可以同时进行多个任务的下载和上传,同时进行多个任务的压缩。 具体设计:我们设置一个任务队列,同时启动多个任务(比如k个任务并行)。每个任务先下载(占用网络),下载完后进行压缩(占用CPU),压缩完后上传(占用网络)。由于网络带宽足够,多个任务的下载和上传可以同时进行(但总带宽不超过1500Mbps)。 我们计算一下网络带宽在多个任务并行时的表现:每个任务下载需要546秒(单任务时),但如果多个任务同时下载,它们将共享带宽。由于我们有足够的时间(一天)和足够的带宽(总带宽大于总需求),所以网络不会成为瓶颈。 因此,我们只需要保证CPU压缩能力足够。使用2个核心,一天提供172800秒的CPU时间,大于102400秒,所以理论上可以完成。 然而,我们需要模拟任务执行时间线,确保在24小时内完成100个任务。 假设我们使用2个核心,同时最多2个任务在压缩。同时,我们允许并行多个任务的下载和上传(比如最多同时几个任务在下载或上传)?由于网络带宽足够,同时下载和上传的任务数不会太多(因为每个任务下载需要500多秒,上传需要100多秒),但总带宽1500Mbps可以支持: 同时下载:每个下载任务需要约1500Mbps(如果单独下载),所以不能同时下载两个任务(因为会超过带宽)。同样,上传也是。但下载和上传可以同时进行(全双工),且总带宽是上下行共享?通常,网卡1500Mbps是指双向总带宽,即下载加上传不能超过1500Mbps。 因此,我们限制同时下载的任务数以及同时上传的任务数,使得总带宽不超过1500Mbps。例如: 同时最多1个下载(1500Mbps)和1个上传(假设上传也需要1500Mbps,但实际上上传只有33.3GB,比下载小,所以上传时间短,且上传占用的带宽可以调整)。但如果我们允许同时1个下载和1个上传,那么: 下载占用1500Mbps,上传也占用1500Mbps,总带宽3000Mbps超过了1500Mbps?所以不能同时进行。 我们需要控制每个任务的带宽,使得同时进行的任务总带宽不超过1500Mbps。 例如,我们设置: 每个任务下载时最大带宽:750Mbps(这样两个任务同时下载就需要1500Mbps,但这样下载时间会加倍,变为546*2=1092秒) 同样,每个任务上传时最大带宽:750Mbps,上传时间变为原来两倍(546/2? 不对,上传原来需要182秒,如果带宽减半,则上传时间变为原来的两倍,即364秒)。 但这样会导致每个任务下载和上传时间变长,进而延长整个任务的时间。 实际上,在压缩级别9,整个传输量只有133.3GB(每个任务),而网络一天能传输15.75TB,所以网络带宽是充裕的。因此,我们可以适当分配带宽,让多个任务同时传输而不至于把每个任务的时间拖得太长。 假设我们允许同时进行多个下载和上传,但总带宽不超过1500Mbps。例如: 同时进行2个下载任务:每个750Mbps,则每个下载任务需要时间为:100*1024*8/750 ≈ 1092秒(原来546秒的两倍)——这显然太长了。 同时进行1个下载和1个上传:下载100GB需要1500Mbps(546秒),上传33.3GB需要1500Mbps,那么上传只要182秒,但是总带宽已经3000Mbps超过1500Mbps?所以不行。 因此,我们需要合理分配带宽。例如: 将1500Mbps分成两部分:下载750Mbps,上传750Mbps。这样: 下载100GB:时间 = (100*1024*8)/750 ≈ 1092秒 上传33.3GB:时间 = (33.3*1024*8)/750 ≈ 364秒 那么每个任务的总传输时间(下载+上传)为1092+364=1456秒,再加上压缩时间1024秒(占用CPU),总时间为2480秒(串行)。 这样每个任务需要2480秒,100个任务串行需要248000秒,远大于86400秒。所以不可行。 实际上,由于网络带宽充裕,我们不需要将每个任务的传输时间延长。我们可以动态调整带宽分配:当一个任务在下载时,给它分配1500Mbps(这样下载只需要546秒);当一个任务在上传时,也给它分配1500Mbps(上传只需182秒)。但由于不能同时进行下载和上传(因为总带宽只有1500Mbps,如果同时进行下载和上传,那么每个只能分750Mbps,这样下载和上传时间都会翻倍,且总时间增加),所以可以考虑: 在同一个时间内,要么进行下载,要么进行上传,但不能同时(因为同时会导致带宽减半,时间反而增加)。 这样,我们按阶段执行: 先集中下载一批任务(每个任务下载546秒,但多个任务并行下载会均分带宽,所以并行下载n个任务,每个任务下载时间变为546*n秒,总时间不变)。下载完一批后,再集中上传。 但是,我们还有压缩阶段。所以更合理的方案是:将任务分批,每批m个任务。 第1步:下载第一批m个任务(并行,每个任务分配带宽1500/m Mbps,下载时间为546*m秒) 第2步:压缩这m个任务(并行,每个任务一个核心,压缩时间1024秒) 第3步:上传这m个任务(并行,每个任务分配带宽1500/m Mbps,上传时间为182*m秒) 这样一批任务总时间:546*m + 1024 + 182*m = (728*m + 1024)秒 需要完成100个任务,批次数为100/m,总时间:(728*m+1024)*(100/m) = 72800 + 102400/m 秒 我们要在86400秒内完成:72800+102400/m <= 86400 即:102400/m <= 13600 所以:m >= 102400/13600 ≈ 7.53,所以取m=8。 则总时间:72800+102400/8=72800+12800=85600秒 < 86400秒。 因此,分批大小为8,需要分批次数:100/8=12.5,即13批(最后一批只有4个任务)。但为了简化,我们按12.5批算,总时间85600秒(约23.78小时)。 此时,每一批任务需要: 下载时间:546*8秒(?注意:这里我们假设并行下载8个任务,每个任务分配带宽1500/8=187.5Mbps,那么每个任务下载时间需要546*(8)秒?不对。因为下载100GB,带宽187.5Mbps(即187.5/8=23.4375MB/s)时,下载时间为:100*1024/23.4375 ≈ 4469.33秒(约74.5分钟)——这显然太长。所以我们的假设错误。 正确的方法:并行下载m个任务,每个任务分配的带宽为1500/m Mbps,则每个任务的下载时间应为: T_down = (100*1024*8) / (1500/m) = (100*1024*8*m)/1500 秒 同样,上传时间:T_up = (33.3*1024*8*m)/1500 秒 因此,一批任务的总时间为:T_batch = T_down + T_compress + T_up = (100*1024*8*m/1500) + 1024 + (33.3*1024*8*m/1500) 简化为:T_batch = ( (100+33.3)*1024*8*m )/1500 + 1024 = (133.3 * 1024 * 8 * m) / 1500 + 1024 总时间:T_total = (100/m) * T_batch = 100/m * [ (133.3 * 1024 * 8 * m)/1500 + 1024 ] = 100 * (133.3 * 1024 * 8)/1500 + 100*1024/m 计算第一部分:100 * (133.3 * 1024 * 8)/1500 = 100 * (1092266.24) / 1500 ≈ 100 * 728.177493333 ≈ 72817.7493333 秒 第二部分:100*1024/m 所以总时间:72817.75 + 102400/m 令总时间<=86400,则:102400/m <= 86400 - 72817.75 = 13582.25 所以 m >= 102400/13582.25 ≈ 7.54 取m=8,则总时间=72817.75+102400/8=72817.75+12800=85617.75秒 < 86400秒。 但是,这里m=8表示每批8个任务,需要CPU核心数8个(因为压缩阶段需要每个任务一个核心,并行压缩8个任务)?不一定!因为压缩阶段是每个任务一个核心,所以需要8个核心。然而,我们前面计算CPU核心数时,只需要2个核心(因为总CPU时间是102400核·秒,2个核心一天有172800秒,足够)。这里的分批是为了解决网络带宽的分配,而压缩阶段我们只有2个核心,怎么能同时压缩8个任务? 因此,我们必须按照CPU核心数来决定压缩阶段的并行度。假设我们有c个CPU核心,那么我们在压缩阶段只能同时压缩c个任务。 所以,更合理的方案是:将任务分成若干批,每批压缩阶段分成若干个小组,每个小组c个任务。一批任务的数量可以大于c,但压缩阶段只能c个任务并行。 具体每批任务数设为m,但是压缩时只能c个任务一组进行压缩(需要m/c组)。因此,一批任务的时间为: 下载时间:并行下载m个任务,时间=(100*1024*8*m)/1500 秒 (每个任务带宽1500/m Mbps) 上传时间:并行上传m个任务,时间=(33.3*1024*8*m)/1500 秒 压缩时间:由于核心数c,所以压缩需要 (m/c)组 * 1024秒(因为每组c个任务并行压缩需要1024秒,因为每个任务压缩时间1024秒,一组c个任务同时进行,所以一组需要1024秒) -> 压缩时间 = ceil(m/c) * 1024秒 (ceil表示向上取整) 因此,一批任务总时间:T_batch = (100*1024*8*m)/1500 + ceil(m/c)*1024 + (33.3*1024*8*m)/1500 总时间:T_total = (100/m) * T_batch 而CPU核心数c需要满足:总CPU时间102400秒<= c * 86400,所以c>=102400/86400≈1.185,取c=2。 现在c=2,我们取m为2的倍数(例如2,4,6,...),以充分利用压缩时的并行。 我们尝试m=2: T_batch = (100+33.3)*1024*8*2/1500 + ceil(2/2)*1024 = (133.3*1024*16/1500) + 1024 = (2183168/1500) + 1024 ≈ 1455.445333 + 1024 = 2479.445333秒 T_total = (100/2)*2479.445333 = 50*2479.445333 = 123972.2667秒 ≈ 34.44小时 > 24小时,不可行。 m=4: T_batch = (133.3*1024*8*4)/1500 + ceil(4/2)*1024 = (133.3*1024*32/1500) + 2*1024 = (4366336/1500) + 2048 ≈ 2910.890667 + 2048 = 4958.890667秒 T_total = 25*4958.890667 ≈ 123972.2667秒,同上,因为100/m=25,m=4时批次数25,但每批时间增加,总时间没变?这是因为每批的数量翻倍,但总任务数不变,批次数减半,但每批时间翻倍(因为网络部分翻倍),所以总时间不变?不对,我们看公式: T_total = (100/m) * [ (133.3*1024*8*m)/1500 + ceil(m/2)*1024 ] = 100 * (133.3*1024*8)/1500 + (100/m) * ceil(m/2)*1024 = 72817.7493333 + (100/m)*ceil(m/2)*1024 因此,m越大,第二部分越小。所以我们要增大m。 取m=10: ceil(10/2)=5 T_batch = 72817.7493333/100 *10 + (100/10)*5*1024 [注意:这里第一部分我写错了,重新整理] 重新写: T_total = [133.3*1024*8*100/1500] + [100/m * ceil(m/2)*1024] = 72817.7493333 + (100/m)*ceil(m/2)*1024 第一部分是常数72817.7493333秒,第二部分:ceil(m/2)是ceil(m/2),乘以1024,再乘以100/m。 所以第二部分=(100*1024/m)*ceil(m/2) 当m=10: ceil(10/2)=5,所以第二部分=100*1024*5/10=100*512=51200秒 总时间=72817.75+51200=124017.75秒>86400秒。 m=20: ceil(20/2)=10,第二部分=100*1024*10/20=100*512=51200秒,总时间不变。 为什么?因为ceil(m/2)/m = ceil(m/2)/(2*ceil(m/2)) = 1/2 (对m偶数),所以第二部分=100*1024*(1/2)=51200秒,与m无关(当m为偶数时)。对于m奇数,ceil(m/2)≈m/2+0.5,所以除以m后约为0.5+0.5/m,略大于0.5。 因此,要总时间<=86400,则: 72817.75 + 51200 = 124017.75 > 86400 不等式没有解?这怎么可能? 这说明我们的分批方案下,总时间至少124017.75秒,大于86400秒。所以我们需要重新考虑。 实际上,我们之前的分批方案中,网络部分的时间计算为72817.75秒,这部分是常数,与分批无关。而 CPU带来的额外时间(由于分批压缩,每批的压缩时间)是51200秒,两部分加起来超过了24小时。 那么,我们是否可以不按批处理,而是流水线处理? 比如,我们设置多个任务并行执行,我们允许: 同时有多个任务在下载(共享带宽) 同时有多个任务在压缩(并行,占用CPU核心) 同时有多个任务在上传(共享带宽) 由于我们有2个CPU核心,所以同时最多2个任务在压缩。网络带宽1500Mbps,我们可以限制同时下载的任务数和上传的任务数。 设:同时下载的任务数不超过d,同时上传的任务数不超过u,同时压缩的任务数不超过c=2。 并且,我们保证:d * (下载速度) + u * (上传速度) <= 1500Mbps. 为了充分利用带宽,我们分配下载和上传的权重。由于下载量(100GB)是上传量(33.3GB)的3倍,我们可以设置下载带宽为总带宽的3/4,上传带宽为1/4。那么: 总下载带宽 = 1500 * 3/4 = 1125 Mbps 总上传带宽 = 1500 * 1/4 = 375 Mbps then, but we also need to decide on and 但实际上,我们更希望 see how many tasks can be run concurrently. 这是一个复杂的调度问题。作为简化,我们参考Amdahl定律, or use simulation. 考虑到实际情况,我们 might not need to worry about network because we have enough total band width. The main constraint is the CPU for compression. With 2 cores, the system can process 2 tasks concurrently in the compression stage. Each task spends 1024 seconds in compression, so the maximum number of tasks that can be compressed in a day is: 2 cores * 86400 seconds / 1024 seconds per task = 168.75 tasks > 100 tasks. So the CPU is sufficient. Then why did our batching approach show insufficient time? Because we assumed that for each batch, the download and upload are done in bulk and sequentially in the batch, which is not efficient. If we overlap the stages of different tasks, we can do better. We can have: - Task1: download -> compress -> upload - Task2: starts download when download bandwidth is available, etc. With 2 cores for compression, and sufficient network bandwidth (which we have in aggregate), we should be able to process tasks at a rate determined by the slowest stage that is not parallelizable. Here, the slowest stage per task is the compression (1024 seconds per task), but with 2 cores, we can process 2 tasks in approximately 1024 seconds. In 1024 seconds, how many tasks can we complete? In an ideal pipeline, we would complete tasks at the rate of the compression stage. Since we can overlap the download and upload of other tasks, the system should be able to complete 2 tasks every 1024 seconds. So in 86400 seconds, the number of tasks completed = 2 * (86400 / 1024) ≈ 168.75 > 100. Therefore, it is feasible. How many in-progress tasks do we need? We need to have enough tasks in the pipeline to keep both the network and CPU busy. Specifically, the download time per task is 546 seconds, upload time 182 seconds, and compression time 1024 seconds. The critical path is the compression, but we have two cores. To keep two cores busy, we need to have always two tasks in the compression stage or ready to enter. The limiting factor might be the download and upload. But the total network bandwidth is sufficient, so we can have multiple tasks renting However, to avoid bandwidth saturation at any time, we should limit the number of concurrent downloads and uploads. Since the network is shared, we might allow: Concurrent downloads: up to floor(1500 Mbps / desired_per_download_bandwidth) but we don't limit per-task bandwidth naturally. But note: if we allow too many concurrent downloads, each will be slow. We instead should set a minimum per-task bandwidth to ensure progress. For example, if we allocate each download task at least 300 from Let's allocate to each download task at least 300 Mbps and each upload task at least 300 Mbps. Then: One download task uses 300 Mbps, one upload task uses 300 Mbps, total 600 Mbps < 1500 Mbps, so we can even have more. However, we try to allow: Max concurrent downloads: 3 (using 900 Mbps) Max concurrent uploads: 2 (using 600 Mbps) Total: 1500 Mbps. Then, for a download task, the download time = 100*1024*8 / 300 = 2730.6667 seconds. This is too long! It would be >45 minutes. Alternatively, to make download time closer to the compression time, we might allocate more bandwidth to each task. Ideally, the download time should be less than or close to the compression time per task, so that we can feed the compressors fast enough. With one download task allocated the full 1500 Mbps, it takes 546 seconds, which is less than the compression time (1024 seconds). So one download can feed more than one compression task? Actually, one download task provides one task's data. So in 546 seconds, we can download one task's data. But one compression takes 1024 seconds. So to keep one compressor busy, we need to download data at a rate of one task per 1024 seconds. We can do that by allocating less bandwidth to download. We only need to download one task every 1024 seconds to keep one compressor busy. So for two compressors, we need to download two tasks every 1024 seconds. The required download bandwidth = (2 tasks / 1024 seconds) * (100*1024*8) Mbps = 2 * 100 * 8 = 1600 Mbps. But our network is only 1500 Mbps, which is close (94% of required). So if we use the full network for download, we can download rate = 1500/(100*8) = 1500/800 = 1.875 tasks per second? Wait, no. One task is 100GB = 800 Gb. Download speed 1500 Mbps = 1.5 Gbps. Time for one task = 800/1.5 ≈ 533.33 seconds. Tasks per second = 1/533.33. In 1024 seconds, we can download 1024/533.33 ≈ 1.92 tasks, which is slightly less than 2 tasks needed for two compressors. Therefore, we would be short by a little. So then we need to: either increase带宽, or reduce the compression time (by using more cores or faster CPU). Given that we are at 1500 Mbps limit, we might need to have three compressors (3 cores) to use the bandwidth fully? Let me see. With three cores, we need to download 3 tasks in 1024 seconds. Required download bandwidth = 3 * 800 Gb / 1024 seconds = 2400/1024 ≈ 2.34375 Gbps = 2343.75 Mbps > 1500 Mbps. So even worse. Therefore, for two cores, we are 2 tasks in 1024 seconds requiring 1600 Mbps download bandwidth, but we only have 1500 Mbps, which is 94% of requirement. So we will have the compressors waiting for data sometimes. The actual throughput of tasks will be determined by the download bandwidth: 1500友爱.75 tasks per second, or one task every 533.33 seconds. Then for 100 tasks, total download time = 100 * 533.33 seconds / 1 (concurrency) = 53333 seconds if done sequentially. But if we pipeline with one download at a time, then the total time would be the time to download the first task + download the last task in parallel with processing earlier ones. In an pipeline: The first task: download (533.33 seconds) -> compress (1024 seconds) -> upload (182 seconds) But the second task can start downloading after the first task's download completes, and so on. So the total time = T_download_first + max( ( remaining downloads and then last压缩, last上传 ) ) Actually, the system will have: Time to download all tasks: from time0 to time when the last download starts: we need to start 100 downloads. If we have one download chamber, then the last download starts at 534*99 seconds? Approximately. This is the Total time = (n-1)*interval + download_time + compression_time + upload_time But interval between downloads is download_time (533.33 seconds) because we can only download one at a time (if we allocate full bandwidth). Then the last download starts at (99)*533.33, and then takes 533.33 seconds to download, so download ends at 100*533.33. Then it takes 1024 seconds to compress (during which time the upload of other tasks can happen), and 182 seconds to upload. So total time = 100*533.33 + 1024 + 182 = 53333 + 1024 + 182 = 54539 seconds = 15.15 hours. But during the download of the last task, we can upload and compress other tasks. In particular, the last task's compress and upload can overlap with nothing special after it. However, the upload of the last task starts after its compression, which is after its download. So the above calculation is for the last task's upload finish time. Also, the first task's upload might start early, but the total time is determined by the last task's upload finish. So total time = time when last task's upload finishes = (99 * 533.33) [ the start time of the last task's download ] + 533.33 [ its下载] + 1024 [ its压缩] + 182 [ its上传] = 100*533.33 + 1024 + 182 = 53333+1024+182 = 54539 seconds. = 15.15 hours < 24 hours. And the compressors are not the bottleneck because they have to compress 100 tasks, each taking 1024 seconds, but they can start before the last task. The only constraint is that the last task's compression can start only after its download, and there is no other task occupying the CPU after that. With two CPU cores, they can work on two tasks concurrently. So the first cores will be busy from when the first task is downloaded onward. The last task's compression might have to wait for a core to become free, but because the download takes about half the time of the compression, and we have two cores, the queue might build up. Specifically, the first task is downloaded at time 533.33, then it occupies core1 for 1024 seconds, so until time 533.33+1024=1557.33. The second task is downloaded at time 533.33*2=1066.66, then it occupies core2 for 1024 seconds, until 1066.66+1024=2090.66. The third task is downloaded at 533.33*3=1599.99, and then it has to wait for a core to become free. The first core will be free at 1557.33, so it wait max(0, 1557.33 - 1599.99) -> no waiting because 1557.33<1599.99? Actually, 1599.99>1557.33, so it doesn't have to wait: core1 is free at 1557.33, and the third task is ready at 1599.99, so core1 can start it at 1599.99 until 1599.99+1024=2623.99. core2 will be free at 2090.66, and the fourth task is ready at 533.33*4=2133.32, so core2 can start the fourth task at 2133.32. It seems that cores are busy but not falling behind. Let's Check the 100th task: It is ready (downloaded) at 99*533.33 = 52799.67 seconds. At that time, both cores may be busy. How to calculate the queue length? The cores' availability. The rate of tasks entering the compression stage is one every 533.33 seconds. Each task requires 1024 seconds of CPU time ( per core). With two cores, the system can compress at a rate of 2 tasks every 1024 seconds, i.e., 1 task every 512 seconds. Since 512 < 533.33, the compression can keep up with the downloads. So there will be no queue buildup. In fact, the cores will have idle time. Therefore, the last task will start its compression immediately at 52799.67 seconds ( if a core is available at that time). Since the cores are not 100% utilized, it will be. So it will finish compression at 52799.67+1024=53823.67 seconds. Then it spends 182 seconds for upload, so finishes at 53823.67+182=54005.67 seconds. Similarly, the uploading can be done in full bandwidth for each task, so each upload takes 182 seconds. But since tasks are not uploaded until after compression, and with two cores the tasks come out at a rate of one every 512 seconds ( but only after the download which is at a rate of one every 533.33 seconds), so the upload will also be smooth. Therefore, the total time is 54005.67 seconds = 15 hours, within 24 hours. So for compression level 9, with 2 CPU cores and 1500 Mbps network, it is feasible. 但是,我们还没有考虑上传。上传也占 bandwidth and might not be able to be done in full bandwidth for each task because the bandwidth is shared with download. Currently, we are using the full bandwidth for downloads when doing one download at a time. When do we do the uploads? They can be done after the compression, and they can overlap with downloads of later tasks. But if we are using the full bandwidth for downloads continuously, then there is no room for uploads. So we must allocate some bandwidth for上传 during the download phase. Therefore, we must reduce the download bandwidth to allow for concurrent uploads. Specifically, we might reserve some bandwidth for uploads at all times. For example, reserve 300 Mbps for uploads and 1200 Mbps for downloads. Тогда: - Download speed per task if done one at a time: 1200 Mbps, download time = 100*1024*8/1200 = 682.67 seconds. - Upload speed when allocated: 300 Mbps, upload time = 33.3*1024*8/300 = 910.93 seconds. But note, uploads can happen in parallels. However, if we have reserved 300 Mbps for uploads, but might have multiple uploads in parallel, then each would be allocated a portion. Alternatively, we can have one upload at a time with 300 Mbps. Now, the pipeline might be: download (1200 Mbps) takes 682.67 seconds per task. upload (300 Mbps) takes 910.93 seconds per task. The download rate is 1 task every 682.67 seconds. The upload rate is 1 task every 910.93 seconds. Since the upload rate is slower than the download rate, and tasks are completed at the rate of the slowest stage. However, upload can overlap with download of other tasks. But the upload stage for a task occurs after its compression. The limiting factor will be the upload stage because it is slower (910. seconds > 682. seconds). With one upload at a time on the reserved upload bandwidth, the time to upload 100 tasks = 100 * 910.93 seconds = 91093 seconds > 24 hours. Therefore, we must increase the upload bandwidth. Alternatively, we might allow concurrent uploads. But upload to the same FTP server the concurrency might be limited by the server. To avoid over-complication, we might allocate half of the bandwidth to download and half to upload, i.e., 750 Mbps for download and 750 Mbps for upload. Then: download time per task = 100*1024*8/750 = 1092.26 seconds. upload time per task = 33.3*1024*8/750 = 364.08 seconds. Also, we can have one download and one upload concurrently. Then the rate of tasks through the system is limited by the download stage (1092.26 seconds per task), because it is slower than upload. then for 100 tasks, total time = 100 * 1092.26 = 109226 seconds > 24 hours. So not acceptable. Therefore, we might allocate more to download and less to upload, knowing that the download volume is greater. Ideally, we want the download stage to be as fast as the compression stage to avoid CPU idle, and the upload stage to not slow down the system. Given: download one task needs 100*1024*8=819200 Mb. upload one task needs 33.3*1024*8=218316.8 Mb. network明珠 1500 Mbps. In the long run, the fraction for download = 819200 / (819200+218316.8) = 0.789 fraction for upload = 1-0.789=0.211 So allocate 78.9% of the bandwidth to download and 21.1% to upload. Specifically, during the whole allocation: download at 0.789*1500 = 1183.5 Mbps, upload at 316.5 Mbps. Then: download time = 819200 / 1183.5 ≈ 692 seconds. upload time = 218316.8 / 316.5 ≈ 690 seconds. This is well balanced. Then the rate per task in the download stage is 692 seconds per task. With one download at a time, the task can be downloaded in 692 seconds, then 1024 seconds for compression, then 690 seconds for upload. But we can pipeline: the next task's download can start immediately after the previous download, so the download of tasks happens at 692 seconds per task. The limiting stage is the compression (1024 seconds > 692 seconds), so the system will be limited by the compression stage. With two cores for compression, they can process one task every 512 seconds approximately. Since 512 < 692, the compression can keep up. So the rate of tasks will be determined by the download stage: one task every 692 seconds. Then for 100 tasks, it will take 100 * 692 = 69200 seconds = 19.22 hours < 24 hours. Therefore, we shouldallocate bandwidth as above. So in conclusion for level 9: We need 2 CPU cores. We allocate bandwidth: about 1180 Mbps for download and 320 Mbps for upload. The tasks will be processed at the rate of approximately 1 task per 692 seconds. Total time for 100 tasks: 69200 seconds. So it is feasible. 综上所述,我们给出最终答案: ### 1. 压缩级别0 (存储) - **网络带宽**: 20TB 总传输量需要至少 2000 Mbps 带宽. 1500 Mbps 不足。 - **CPU**: 1 核 (近乎零消耗)。 - **结论**: 在当前 1500 Mbps 带宽下不可行, 需升级至 2000+ Mbps。 ### 2. 压缩级别9 (最大压缩) - **网络带宽**: 13.33TB 총传输量, 1500 Mbps 足够, 需动态分配带宽 (下载 1180 Mbps + 上传 320 Mbps)。 - **CPU**: 2 核 (海光CPU, 单核压缩速度 100MB/s) 可满足 100 任务/天。 - **执行时间**: 约 19.22 小时 (69200 秒) 完成 100 个任务。 ### 建议配置 | 压缩级别 | CPU核数 | 网络带宽需求 | 可行性 (当前 1500 Mbps) | |----------|----------|-----------------------|-------------------------| | 0 | 1 | 2000+ Mbps | 不可行 (需升级) | | 9 | 2 | 1180+320=1500 Mbps | 可行 | </think>基于阿里云ECS、海光CPU和1500Mbps网卡环境,针对每天100次×100GB文件的下载、压缩、上传任务,结合TPC-C模型的计算逻辑(将任务分解为资源消耗单元并评估并发需求),分析压缩级别0和级别9的资源需求如下: ### 1. **压缩级别0(存储,不压缩)** #### (1) 资源需求分析 - **传输需求**: - 单任务:下载100GB + 上传100GB = **200GB** - 每日总量:$100 \times 200\text{GB} = 20\text{TB}$ - **网络带宽瓶颈**(1500Mbps = 187.5MB/s): - 最大日传输量:$\frac{1500}{8} \times 86400 \div 1024 \approx 15.45\text{TB}$ - $20\text{TB} > 15.45\text{TB}$ → **带宽不足** - **TPC-C风格建模**: - 任务分解:下载(I/O密集型)→ 打包(接近0 CPU)→ 上传(I/O密集型) - 单任务耗时:$T_{\text{down}} = \frac{100 \times 1024}{187.5} \approx 546\text{s}$,$T_{\text{up}} = 546\text{s}$,总耗时 $1092\text{s}$ - 串行总时间:$100 \times 1092 = 109,200\text{s} (\approx30.33\text{h}) > 24\text{h}$ - 带宽升级需求:$\frac{20 \times 1024^2 \times 8}{86400} \approx 1939\text{Mbps}$ → **需 ≥2000Mbps** #### (2) CPU需求 - 打包操作CPU消耗可忽略 → **仅需1核** - **结论**: **不可行**(带宽不足),需升级至2000Mbps带宽。 --- ### 2. **压缩级别9(最大压缩,假设3:1压缩比)** #### (1) 资源需求分析 - **传输需求**: - 单任务:下载100GB + 上传33.3GB = **133.3GB** - 每日总量:$100 \times 133.3\text{GB} \approx 13.33\text{TB}$ - **网络带宽验证**:$13.33\text{TB} < 15.45\text{TB}$ → **带宽足够** - **任务分解**: - 下载:$T_{\text{down}} = \frac{100 \times 1024}{187.5} \approx 546\text{s}$ - 压缩(海光CPU单核100MB/s):$T_{\text{compress}} = \frac{100 \times 1024}{100} = 1024\text{s}$ - 上传:$T_{\text{up}} = \frac{33.3 \times 1024}{187.5} \approx 182\text{s}$ #### (2) TPC-C模型计算 - **CPU核心需求**: - 总CPU工时:$100 \times 1024 = 102,400\text{核·s}$ - 最小核心数:$n_{\text{min}} = \frac{102,400}{86,400} \approx 1.185$ → **至少需2核** - **动态带宽分配优化**: - 带宽分配:下载占78.9% (1183.5Mbps),上传占21.1% (316.5Mbps) - 传输时间:$T_{\text{down}} = \frac{100 \times 1024 \times 8}{1183.5} \approx 692\text{s}$,$T_{\text{up}} = \frac{33.3 \times 1024 \times 8}{316.5} \approx 690\text{s}$ - **流水线调度模型**: - 任务速率:下载阶段决定流水线速率(1任务/692s) - 压缩并行:2核处理能力(1任务/512s)> 下载速率 → **CPU无堆积** - 总耗时:$100 \times 692 = 69,200\text{s} (\approx 19.22\text{h}) < 24\text{h}$ #### (3) 资源配置 - **CPU**:2核(满足$102,400\text{核·s} < 2 \times 86,400 = 172,800\text{核·s}$) - **带宽分配**:下载1180Mbps + 上传320Mbps(动态调整) - **结论**: **可行**(当前资源可满足) --- ### 3. **总结与建议** | 压缩级别 | 最小CPU核数 | 网络带宽需求 | 可行性 (1500Mbps) | TPC-C优化策略 | |----------|-------------|----------------------|-------------------|----------------------------| | **0** | 1核 | 需≥2000Mbps | 不可行 | 升级带宽,串行传输 | | **9** | 2核 | 1180Mbps↓ + 320Mbps↑ | 可行 | 动态带宽分配+流水线调度 | > **实施建议**: > 1. 级别9采用动态带宽分配: > ```python > # 带宽分配算法示例 > total_bandwidth = 1500 # Mbps > download_ratio = 0.789 # 下载带宽占比 > upload_ratio = 0.211 # 上传带宽占比 > ``` > 2. 文件压缩使用多线程工具(如`pigz`)提升吞吐量: > ```bash > pigz -9 -p 2 input_file # 启用2线程 > ``` > 3. 通过FTP传输优化代码[^2]: > - 使用`STOR`命令前验证服务器响应码150 > - 增加超时重传机制
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值