Spark 中log4j的设置

本文详细介绍了Apache Spark的日志配置方法,特别是如何设置log4j来控制不同组件的日志级别,减少不必要的信息输出,提高shell运行效率。针对Spark SQL与Hive集成时遇到的问题也给出了相应的解决策略。

log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd
HH:mm:ss} %p %c{1}: %m%n

Set the default spark-shell log level to ERROR. When running the spark-shell,

the

log level for this class is used to overwrite the root logger’s log level, so

that

the user can have different defaults for the shell and regular Spark apps.

log4j.logger.org.apache.spark.repl.Main=ERROR

Settings to quiet third party logs that are too verbose

log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMainexprTyper=ERRORlog4j.logger.org.apache.spark.repl.SparkILoopexprTyper=ERROR log4j.logger.org.apache.spark.repl.SparkILoopexprTyper=ERRORlog4j.logger.org.apache.spark.repl.SparkILoopSparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR

SPARK-9183: Settings to avoid annoying messages when looking up nonexistent

UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值