MySQL死锁及解决方案

一、MySQL锁类型

1. MySQL常用存储引擎的锁机制

MyISAM和MEMORY采用表级锁(table-level locking)

BDB采用页面锁(page-level locking)或表级锁,默认为页面锁

InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁

2. 各种锁特点

表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低

行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高

页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般

3. 各种锁的适用场景

表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用

行级锁则更适合于有大量按索引条件并发更新数据,同时又有并发查询的应用,如一些在线事务处理系统。

二、 MySQL死锁产生原因

所谓死锁:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。表级锁不会产生死锁.所以解决死锁主要还是针对于最常用的InnoDB。

死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。

那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。

三、 MySQL死锁举例分析

案例一:

在MySQL中,行级锁并不是直接锁记录,而是锁索引。索引分为主键索引和非主键索引两种,如果一条sql语句操作了主键索引,MySQL就会锁定这条主键索引;如果一条语句操作了非主键索引,MySQL会先锁定该非主键索引,再锁定相关的主键索引。在UPDATE、DELETE操作时,MySQL不仅锁定WHERE条件扫描过的所有索引记录,而且会锁定相邻的键值,即所谓的next-key locking。

例如,一个表db.tab_test,结构如下:

id:主键;state:状态;time:时间;索引:idx_1 (state, time)

出现死锁日志如下:

***(1) TRANSACTION: TRANSACTION 0 677833455, ACTIVE 0 sec, process no 11393, OS thread id 278546 starting index readmysql tables in use 1, locked 1 LOCK WAIT 3 lock struct(s), heap size 320 MySQL thread id 83, query id 162348740 dcnet03 dcnet Searching rows for updateupdate tab_test set state=1064,time=now() where state=1061 and time < date_sub(now(), INTERVAL 30 minute) (任务1的sql语句) ***(1) WAITING FOR THIS LOCK TO BE GRANTED: (任务1等待的索引记录) RECORD LOCKS space id 0 page no 849384 n bits 208 index `PRIMARY` of table `db/tab_test` trx id 0 677833455 _mode X locks rec but not gap waiting Record lock, heap no 92 PHYSICAL RECORD: n_fields 11; compact format; info bits 0 0: len 8; hex 800000000097629c; asc b ;; 1: len 6; hex 00002866eaee; asc (f ;; 2: len 7; hex 00000d40040110; asc @ ;; 3: len 8; hex 80000000000050b2; asc P ;; 4: len 8; hex 800000000000502a; asc P*;; 5: len 8; hex 8000000000005426; asc T&;; 6: len 8; hex 800012412c66d29c; asc A,f ;; 7: len 23; hex 75706c6f6164666972652e636f6d2f6 8616e642e706870; asc xxx.com/;; 8: len 8; hex 800000000000042b; asc +;; 9: len 4; hex 474bfa2b; asc GK +;; 10: len 8; hex 8000000000004e24; asc N$;; *** (2) TRANSACTION: TRANSACTION 0 677833454, ACTIVE 0 sec, process no 11397, OS thread id 344086 updating or deleting, thread declared inside InnoDB 499 mysql tables in use 1, locked 1 3 lock struct(s), heap size 320, undo log entries 1 MySQL thread id 84, query id 162348739 dcnet03 dcnet Updating update tab_test set state=1067,time=now () where id in (9921180) (任务2的sql语句) *** (2) HOLDS THE LOCK(S): (任务2已获得的锁) RECORD LOCKS space id 0 page no 849384 n bits 208 index `PRIMARY` of table `db/tab_test` trx id 0 677833454 lock_mode X locks rec but not gap Record lock, heap no 92 PHYSICAL RECORD: n_fields 11; compact format; info bits 0 0: len 8; hex 800000000097629c; asc b ;; 1: len 6; hex 00002866eaee; asc (f ;; 2: len 7; hex 00000d40040110; asc @ ;; 3: len 8; hex 80000000000050b2; asc P ;; 4: len 8; hex 800000000000502a; asc P*;; 5: len 8; hex 8000000000005426; asc T&;; 6: len 8; hex 800012412c66d29c; asc A,f ;; 7: len 23; hex 75706c6f6164666972652e636f6d2f6 8616e642e706870; asc uploadfire.com/hand.php;; 8: len 8; hex 800000000000042b; asc +;; 9: len 4; hex 474bfa2b; asc GK +;; 10: len 8; hex 8000000000004e24; asc N$;; *** (2) WAITING FOR THIS LOCK TO BE GRANTED: (任务2等待的锁) RECORD LOCKS space id 0 page no 843102 n bits 600 index `idx_1` of table `db/tab_test` trx id 0 677833454 lock_mode X locks rec but not gap waiting  Record lock, heap no 395 PHYSICAL RECORD: n_fields 3; compact format; info bits 0 0: len 8; hex 8000000000000425; asc %;; 1: len 8; hex 800012412c66d29c; asc A,f ;; 2: len 8; hex 800000000097629c; asc b ;; *** WE ROLL BACK TRANSACTION (1) (回滚了任务1,以解除死锁)

原因分析:

当“update tab_test set state=1064,time=now() where state=1061 and time < date_sub(now(), INTERVAL 30 minute)”执行时,MySQL会使用idx_1索引,因此首先锁定相关的索引记录,因为idx_1是非主键索引,为执行该语句,MySQL还会锁定主键索引。

假设“update tab_test set state=1067,time=now () where id in (9921180)”几乎同时执行时,本语句首先锁定主键索引,由于需要更新state的值,所以还需要锁定idx_1的某些索引记录。

这样第一条语句锁定了idx_1的记录,等待主键索引,而第二条语句则锁定了主键索引记录,而等待idx_1的记录,这样死锁就产生了。

解决办法

拆分第一条sql,先查出符合条件的主键值,再按照主键更新记录:

select id from tab_test where state=1061 and time < date_sub(now(), INTERVAL 30 minute); update tab_test state=1064,time=now() where id in(......); 

至此MySQL死锁问题得以解决!

案例二:

在开发中,经常会做这类的判断需求:根据字段值查询(有索引),如果不存在,则插入;否则更新。

以id为主键为例,目前还没有id=22的行 Session1:select * from t3 where id=22 for update;Empty set (0.00 sec) session2:select * from t3 where id=23  for update;Empty set (0.00 sec) Session1:insert into t3 values(22,'ac','a',now());锁等待中…… Session2:insert into t3 values(23,'bc','b',now());ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

当对存在的行进行锁的时候(主键),mysql就只有行锁。

当对未存在的行进行锁的时候(即使条件为主键),mysql是会锁住一段范围(有gap锁) 

锁住的范围为:

(无穷小或小于表中锁住id的最大值,无穷大或大于表中锁住id的最小值) 

如:如果表中目前有已有的id为(11 , 12)

那么就锁住(12,无穷大)

如果表中目前已有的id为(11 , 30)

那么就锁住(11,30)

对于这种死锁的解决办法是:

insert into t3(xx,xx) on duplicate key update `xx`='XX';

用mysql特有的语法来解决此问题。因为insert语句对于主键来说,插入的行不管有没有存在,都会只有行锁。

案例三:

 

一般的情况,两个session分别通过一个sql持有一把锁,然后互相访问对方加锁的数据产生死锁。

案例四:

 

 两个单条的sql语句涉及到的加锁数据相同,但是加锁顺序不同,导致了死锁。

四、 MySQL死锁总结

1. 死锁预防策略 

InnoDB引擎内部(或者说是所有的数据库内部),有多种锁类型:事务锁(行锁、表锁),Mutex(保护内部的共享变量操作)、RWLock(又称之为Latch,保护内部的页面读取与修改)。

InnoDB每个页面为16K,读取一个页面时,需要对页面加S锁,更新一个页面时,需要对页面加上X锁。任何情况下,操作一个页面,都会对页面加锁,页面锁加上之后,页面内存储的索引记录才不会被并发修改。

因此,为了修改一条记录,InnoDB内部如何处理:根据给定的查询条件,找到对应的记录所在页面;对页面加上X锁(RWLock),然后在页面内寻找满足条件的记录;在持有页面锁的情况下,对满足条件的记录加事务锁(行锁:

根据记录是否满足查询条件,记录是否已经被删除,分别对应于上面提到的3种加锁策略之一);

死锁预防策略:相对于事务锁,页面锁是一个短期持有的锁,而事务锁(行锁、表锁)是长期持有的锁。因此,为了防止页面锁与事务锁之间产生死锁。

InnoDB做了死锁预防的策略:持有事务锁(行锁、表锁),可以等待获取页面锁;但反之,持有页面锁,不能等待持有事务锁。根据死锁预防策略,在持有页面锁,加行锁的时候,如果行锁需要等待。则释放页面锁,然后等待行锁。此时,行锁获取没有任何锁保护,因此加上行锁之后,记录可能已经被并发修改。

因此,此时要重新加回页面锁,重新判断记录的状态,重新在页面锁的保护下,对记录加锁。如果此时记录未被并发修改,那么第二次加锁能够很快完成,因为已经持有了相同模式的锁。

但是,如果记录已经被并发修改,那么,就有可能导致本文前面提到的死锁问题。以上的InnoDB死锁预防处理逻辑,对应的函数,是row0sel.c::row_search_for_mysql()。

感兴趣的朋友,可以跟踪调试下这个函数的处理流程,很复杂,但是集中了InnoDB的精髓。

2. 死锁产生的前提

Delete操作,针对的是唯一索引上的等值查询的删除;(范围下的删除,也会产生死锁,但是死锁的场景,跟本文分析的场景,有所不同)。

少有3个(或以上)的并发删除操作;

并发删除操作,有可能删除到同一条记录,并且保证删除的记录一定存在;

事务的隔离级别设置为Repeatable Read,同时未设置innodb_locks_unsafe_for_binlog参数(此参数默认为FALSE);(Read Committed隔离级别,由于不会加Gap锁,不会有next key,因此也不会产生死锁);

使用的是InnoDB存储引擎;(废话!MyISAM引擎根本就没有行锁)。

### MySQL 死锁解决方案的最佳实践 #### 一、死锁概述 MySQL 的 InnoDB 存储引擎支持事务和行级锁定,在高并发场景下可能会发生死锁现象。当两个或多个事务相互持有对方所需的资源并等待释放时,就会形成死锁[^1]。 #### 二、解决死锁的核心方法 以下是几种常见的解决 MySQL 死 lock 的最佳实践: 1. **保持一致的事务访问顺序** 确保所有事务按照相同的顺序访问数据库中的对象(表、索引等),这样可以有效减少死锁的发生概率。例如,对于多张表的操作,始终先更新 `table_a` 再更新 `table_b`。 2. **优化 SQL 和事务逻辑** 尽量缩短事务的持续时间,减少锁持有的范围。可以通过批量处理数据来降低单次事务的影响范围。此外,避免在事务中执行耗时较长的操作,比如复杂的计算或外部调用[^3]。 3. **设置合理的隔离级别** 默认情况下,InnoDB 使用可重复读(REPEATABLE READ)作为隔离级别。如果业务允许,可以考虑降级到读已提交(READ COMMITTED),从而减少因间隙锁引发的冲突[^4]。 4. **启用死锁检测机制** InnoDB 能够自动检测死锁,并选择回滚其中代价较小的一个事务以解除阻塞状态。管理员无需手动干预这一过程。 5. **记录与分析死锁事件** 配置参数 `innodb_print_all_deadlocks=ON` 启用全局死锁日志功能,将每次捕获到的信息写入错误文件供后续审查。通过解析这些报告,能够定位具体问题所在。 6. **重试失败的事务** 对于被强制终止的小型变更类操作,可以在应用程序层面实现自动重试策略。通常建议采用指数退避算法控制间隔时间增长速度,防止短时间内频繁尝试造成额外负载[^2]。 7. **调整硬件资源配置** 如果经过上述软件层面上的努力仍然无法满足性能需求,则需评估是否有必要升级服务器规格或者引入分区技术分担压力。 ```sql -- 查看最近一次发生的死锁详情 SHOW ENGINE INNODB STATUS; ``` 以上措施综合运用可以帮助构建更加健壮稳定的系统架构,显著缓解甚至杜绝大部分实际生产环境中可能出现的 mysql dead locks 情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值