先睹为快:Visual Studio 测试版已于.在微软官方网站正式发布

险有俑氐进入Ollama官方网站后,可以看到Ollama已经支持DeepSeek-R1的部署:

点击DeepSeek-R1的链接可以看到有关deepseek-r1的详细介绍:

目前deepseek-r1模型大小提供了7个选择:1.5b、7b、8b、14b、32b、70b、671b。

因为我笔记本的显卡配置较低,所以这里只能选择最小的1.5b模型来做演示:

config

你可以根据你的硬件情况选择,通常模型大小(参数量)越大,模型的理解和生成能力越强,但也会消耗更多的计算资源。

点击Download按钮下载符合自己平台的Ollama:

我这里选择macOS,点击下载。

下载文件大小不到200M,文件名为:Ollama-darwin.zip。

解压后打开Ollama应用程序,提示:

点击Install安装ollama。

按照提示,打开终端,使用 Command + Space 快捷键调用 terminal:

这里Ollama默认给出的例子是下载/运行llama3.2大模型,

我们这里不使用这个llama3.2模型,直接下载/运行deepseek,参数选择最小的1.5b,在终端窗口运行下面命令:

ollama run deepseek-r1:1.5b

jingyuzhao@jingyuzhao-mac ~ % ollama run deepseek-r1:1.5b

pulling manifest

pulling manifest

pulling manifest

pulling manifest

pulling manifest

pulling manifest

pulling aabd4debf0c8... 100% ▕████████████████████████████████████████▏ 1.1 GB

pulling 369ca498f347... 100% ▕████████████████████████████████████████▏ 387 B

pulling 6e4c38e1172f... 100% ▕████████████████████████████████████████▏ 1.1 KB

pulling f4d24e9138dd... 100% ▕████████████████████████████████████████▏ 148 B

pulling a85fe2a2e58e... 100% ▕████████████████████████████████████████▏ 487 B

verifying sha256 digest

writing manifest

success

>>> Send a message (/? for help)

这里就直接可以和DeepSeek对话了:

>>> Hi! Who are you?

Hi! I'm DeepSeek-R1, an artificial intelligence assistant created by DeepSeek. I'm at your service

and would be delighted to assist you with any inquiries or tasks you may have.

>>> 你好,你是谁?

你好!我是DeepSeek-R1,一个由深度求索公司开发的智能助手。我擅长通过思考来帮您解答复杂的数学,代码和

逻辑推理等理工类问题。 Feel free to ask me anything you'd like me to know!

>>> Send a message (/? for help)

2.下载Chatbox并配置为本地DeepSeek

Chatbox官方网站:

https://chatboxai.app/en

我这里还是Intel-based的MAC,

下载的Chatbox-1.9.7.dmg,大小100M多点,点击安装,按下面提示拖到Applications内:

注意,这里我故意选错成DeepSeek API,这也是初学者经常会选错的,实际上,若选择这个你就找不到你本地的DeepSeek模型。

实际正确应该选择OLLAMA API,然后就可以看到我们上一步安装好的deepseek-r1:1.5b。

3.无需联网也能和DeepSeek畅快聊天

配置好DeepSeek本地模型之后,就可以实现在断网情况下自由问答了,比如,此刻我正在写这篇文章,于是就问他帮我想几个备选的标题:

我正在写一篇文章,我起的名字是“手把手教你部署 DeepSeek 本地模型”。请你帮我重新生成10个吸引眼球的标题供我选择。

他真的迅速给我起了10个吸引眼球的标题,还提供了它思考的过程,而且在我这4年前的电脑上跑起来都很迅速。

嗯,真的很赞!不过我还是决定用自己最初想的朴实标题,不做标题党了。

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值