106. Construct Binary Tree from Inorder and Postorder Traversal
105. Construct Binary Tree from Preorder and Inorder Traversal
由前序遍历+中序遍历(或中序遍历+后序遍历)重建二叉树。
- 以前序+中序为例,前序为根左右,因此第一个出现的为根节点,而中序则是左根右,根节点位于中间。因此可以在中序遍历中找根节点的位置,此位置左边为左子树,右边都为右子树。如此分别递归左子树与右子树的序列,即能重建二叉树。
/**
- Definition for a binary tree node.
- public class TreeNode {
- int val;
- TreeNode left;
- TreeNode right;
- TreeNode(int x) { val = x; }
- }
*/
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
return helper(preorder,0,preorder.length-1,inorder,0,inorder.length-1);
}
public TreeNode helper(int[] preorder,int startPre,int endPre,int[] inorder,int startIn,int endIn){
if(startPre>endPre || startIn>endIn) return null;
TreeNode root = new TreeNode(preorder[startPre]);
for(int i=startIn;i<=endIn;i++){
if(inorder[i] == preorder[startPre]){
root.left = helper(preorder,startPre+1,startPre+i-startIn,inorder,startIn,i-1);
root.right = helper(preorder,startPre+i-startIn+1,endPre,inorder,i+1,endIn);
return root;
}
}
return null;
}
}
- 中序遍历+后序遍历同理,后序为左右根,因此后序遍历从后往前的第一个即为根节点,在中序遍历中找此根节点,同理得到左子树与右子树,再分别递归:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
return helper(inorder,0,inorder.length-1,postorder,0,postorder.length-1);
}
public TreeNode helper(int[] inorder,int startIn,int endIn,int[] postorder,int startPost,int endPost){
if(startIn>endIn || startPost>endPost) return null;
TreeNode root = new TreeNode(postorder[endPost]);
for(int i = startIn;i<=endIn;i++){
if(inorder[i] == root.val){
root.left = helper(inorder,startIn,i-1,postorder,startPost,startPost+i-startIn-1);
root.right = helper(inorder,i+1,endIn,postorder,startPost+i-startIn,endPost-1);
return root;
}
}
return null;
}
}