1128. N Queens Puzzle (20)
The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)
Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ..., QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.
![]() |
![]() | |
|
|
|
Input Specification:
Each input file contains several test cases. The first line gives an integer K (1 < K <= 200). Then K lines follow, each gives a configuration in the format "N Q1 Q2 ... QN", where 4 <= N <= 1000 and it is guaranteed that 1 <= Qi <= N for all i=1, ..., N. The numbers are separated by spaces.
Output Specification:
For each configuration, if it is a solution to the N queens problem, print "YES" in a line; or "NO" if not.
Sample Input:4 8 4 6 8 2 7 1 3 5 9 4 6 7 2 8 1 9 5 3 6 1 5 2 6 4 3 5 1 3 5 2 4Sample Output:
YES NO NO YES
-----------------------------------------
思路:建立坐标系,检查三次映射,分别是点在y轴上的映射(数值是y)、向左45度在x轴上的映射(数值是x-y)、向右45度在x轴上的映射(数值是x+y)
只要有一次重合则表示棋盘违规,下图图二画圈部分重合(即x-y均为-5)
#include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <vector> #include <queue> #include <stack> using namespace std; int main() { //freopen("in.txt","r",stdin); int K; cin>>K; while(K--) { int book1[2000]={0}; int book2[2000]={0}; int book3[2000]={0}; int N,i,x,y,flag=1; cin>>N; for(i=1;i<=N;i++) { int t; cin>>t; x=i; y=t; if(book1[y]==0) book1[y]++; else flag=0; if(book2[x-y]==0) book2[x-y]++; else flag=0; if(book3[x-y]==0) book3[x-y]++; else flag=0; } if(flag==0) printf("NO\n"); else printf("YES\n"); } return 0; }
本文介绍了一个简化版的N皇后问题,任务是判断给定的棋盘配置是否为有效解。通过建立坐标系并检查三个方向的映射来验证棋盘状态的有效性。


904

被折叠的 条评论
为什么被折叠?



