Reduced ID Numbers
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 8596 | Accepted: 3448 |
Description
T. Chur teaches various groups of students at university U. Every U-student has a unique Student Identification Number (SIN). A SIN s is an integer in the range 0 ≤ s ≤ MaxSIN with MaxSIN = 10
6-1. T. Chur finds this range of SINs too large for identification within her groups. For each group, she wants to find the smallest positive integer m, such that within the group all SINs reduced modulo m are unique.
Input
On the first line of the input is a single positive integer N, telling the number of test cases (groups) to follow. Each case starts with one line containing the integer G (1 ≤ G ≤ 300): the number of students in the group. The following G lines each contain one SIN. The SINs within a group are distinct, though not necessarily sorted.
Output
For each test case, output one line containing the smallest modulus m, such that all SINs reduced modulo m are distinct.
Sample Input
2 1 124866 3 124866 111111 987651
Sample Output
1 8
Source
每个学生都有一个SIN,但是范围太大,求在每个组里能找到最小的正整数m,使得当前组内的所有数对模m均布同余。
枚举每一个数,暴力搜。
//844K 454MS
#include<stdio.h>
#include<string.h>
int s[100007];
bool vis[100007];
int main()
{
int n;
scanf("%d",&n);
while(n--)
{
int m,i;
memset(s,0,sizeof(s));
scanf("%d",&m);
for(int i=1;i<=m;i++)
scanf("%d",&s[i]);
for(i=1;;i++)
{
int flag=0;
memset(vis,0,sizeof(vis));
for(int j=1;j<=m;j++)
{
if(vis[s[j]%i])//对i取余得到的结果在次数之前已经有过
{
flag=1;//标记此i不是所求,break
break;
}
vis[s[j]%i]=1;//否则标记访问过
}
if(!flag)break;
}
printf("%d\n",i);
}
return 0;
}