Polynomial Regression

本文探讨了在预测房价的应用场景下如何通过特征组合及多项式回归改进模型表现。介绍了将房屋临街宽度与深度结合成单一特征的方法,并讨论了在不同阶数多项式回归中特征缩放的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

choosing your features
这里写图片描述
defining new features you might actually get a better model
1. combine multiple features into one.
to predict the price of a house
there’s two features:
the frontage of house x1
the depth of the house x2
however we can use X=x1*x2 as the only feature

2.Polynomial Regression
we can fit a quadratic model for it
however this function comes back down against the fact (housing prices won’t go down when the size goes up too high).
then we might choose a cubic function
to realize it
compared with multivariant linear regression we find similarity.(back to the picture)
so choosing three features this way
by the way feature scaling becomes increasingly important
eg. if x1 has range 1 - 1000 then range of x21 becomes 1 - 1000000 and that of x31 becomes 1 - 1000000000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值