并查集
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1000;
int father[maxn];
int findroot(int x){
if(x != father[x]){
father[x] = findroot(father[x]);
}
return father[x];
}
int main()
{
int n,a,b;
char s[2];
scanf("%d",&n);
for(int i=1;i<=n;i++){
father[i] = i;
}
while(scanf("%s",s)!=EOF && s[0] != 'S'){
scanf("%d %d",&a,&b);
if(s[0] == 'C'){
if(findroot(a) != findroot(b))
printf("no\n");
else
printf("yes");
}
if(s[0] == 'I'){
int ar = findroot(a);
int br = findroot(b);
if(ar != br){
father[ar] = br;
n--;
}
}
}
if(n == 1){
printf("The network is connected.\n");
}
else{
printf("There are %d components.\n",n);
}
return 0;
}
本文深入探讨了并查集算法的实现原理与应用,通过一个具体的C++代码示例介绍了如何构建并查集来解决图的连接性问题,并展示了如何通过不断合并集合来更新并查集的状态。
691

被折叠的 条评论
为什么被折叠?



