[LinkedIn]Min cost of paint house with color

本文介绍了一种解决房屋涂色问题的动态规划算法。给定一系列房屋及每座房屋涂成红色、绿色或蓝色的成本,在确保相邻房屋颜色不同的前提下,计算出涂色所有房屋所需的最低总成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

见过在onsite的居多

Given a list of houses and the cost of painting each house, the houses can be painted in three colors RED, GREEN and BLUE, two neighboring houses can’t be painted in the same color, calculate the total minimum cost for painting all houses.

解法:

1) Dynamic programming problem.
2)Maintain a array of min cost called min_cost, each column represent a color and each row represent a houses.
3) min_cost[i][0] represents that, when the ith house is painted Red, the min cost of 0 to ith houses. Thus we have the following:

min_cost{i} = min(
//since the current color cannot be the same as the previous one
cost[i][R] + min(cost{i-1, B}, cost{i-1, G}),
cost[i][B] + min(cost{i-1, R}, cost{i-1, G}),
cost[i][G] + min(cost{i-1, R}, cost{i-1, B})
)

/*
 *  Code:
 */
//cost is a #_of_house x 3 array
public int minPaintCost(int[][] cost) {
    if (cost == null || cost.length == 0) return 0;
    int[][] dp = new int[cost.length][3];
    dp[0][0] = cost[0][0], dp[0][1] = cost[0][1], dp[0][2] = cost[0][2];
    for (int i = 1; i < cost.length; ++i) {
        dp[i][0] = cost[i][0] + Math.min(dp[i-1][1], dp[i-1][2]);
        dp[i][1] = cost[i][1] + Math.min(dp[i-1][0], dp[i-1][2]);
        dp[i][2] = cost[i][2] + Math.min(dp[i-1][0], dp[i-1][1]);
    }
    return Math.min(dp[dp.length-1][0], Math.min(dp[dp.length-1][1],[dp.length-1][2]));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值