Chapter 9 Sequential Containers

本文介绍了C++标准库中不同容器的选择依据及其使用场景,包括vector、list、deque等的特点与适用条件,并探讨了容器间元素转移及容量管理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.There are a few rules of thumb that apply to selecting which container to use: 

• Unless you have a reason to use another container, use avector.
• If your program has lots of small elements and space overhead matters, don’t

use list or forward_list.

• If the program requires random access to elements, use avector or a deque.

• If the program needs to insert or delete elements in the middle of the container,use alist or forward_list.

• If the program needs to insert or delete elements at the front and the back, butnot in the middle, use adeque.

• If the program needs to insert elements in the middle of the container onlywhile reading input, and subsequently needs random access to the elements:

– First, decide whether you actually need to add elements in the middle of acontainer. It is often easier to append to avector and then call the librarysortfunction (which we shall cover in §10.2.3(p. 384)) to reorder thecontainer when you’re done with input.

– If you must insert into the middle, consider using alist for the input phase.Once the input is complete, copy thelist into a vector

2.To create a container as a copy of another container, the container and elementtypes must match. When we pass iterators, there is no requirement that the containertypes be identical. Moreover, the element types in the new and original containers candiffer as long as it is possible to convert (§4.11, p.159) the elements we’re copyingto the element type of the container we are initializing.

When we initialize a container as a copy of another container, the containertype and element type of both containers must be identical. 

The constructors that take a size are valid only for sequential containers; theyare not supported for the associative containers.

page429image16976

3.The fact that elements are not moved means that, with the exception ofstring,iterators, references, and pointers into the containers are not invalidated. They referto the same elements as they did before the swap. However, after the swap, thoseelements are in a different container.  

Differently from the containers, a call toswap on astringmay invalidate iterators, references and pointers. 

Unlike how swap behaves for the other containers, swapping twoarrays doesexchange the elements. As a result, swapping two arrays requires time proportionalto the number of elements in thearray

After the swap, pointers, references, and iterators remain bound to the same element they denoted before the swap. Of course, the value of that element has been swapped with the corresponding element in the other array

4.push_back:

list, vector, deque. Although string supports the 'char' version of push_back, I may simply use '+'.

5.push_front:

list, forward_list, deck

6.insert:

vector, deque, list and string.

7.The new standard introduced three new members—emplace_front, emplace, andemplace_back—that construct rather than copy elements. These operationscorrespond to the push_front, insert, and push_back operations in that theylet us put an element at the front of the container, in front of a given position, or atthe back of the container, respectively. 

8.Each sequential container, including array, has a front member, and all except forward_list also have a back member. These operations return a reference tothe first and last element, respectively .

As usual, if we use auto to store the return from one of these functions and we wantto use that variable to change the element, we must remember to define our variableas a reference type. 

9.Members to manage capacity

vector and string: c.shrink_to_fit(); c.capacity(); c.reserve(n);

内容概要:论文提出了一种基于空间调制的能量高效分子通信方案(SM-MC),将传输符号分为空间符号和浓度符号。空间符号通过激活单个发射纳米机器人的索引来传输信息,浓度符号则采用传统的浓度移位键控(CSK)调制。相比现有的MIMO分子通信方案,SM-MC避免了链路间干扰,降低了检测复杂度并提高了性能。论文分析了SM-MC及其特例SSK-MC的符号错误率(SER),并通过仿真验证了其性能优于传统的MIMO-MC和SISO-MC方案。此外,论文还探讨了分子通信领域的挑战、优势及相关研究工作,强调了空间维度作为新的信息自由度的重要性,并提出了未来的研究方向和技术挑战。 适合人群:具备一定通信理论基础,特别是对纳米通信和分子通信感兴趣的科研人员、研究生和工程师。 使用场景及目标:①理解分子通信中空间调制的工作原理及其优势;②掌握SM-MC系统的具体实现细节,包括发射、接收、检测算法及性能分析;③对比不同分子通信方案(如MIMO-MC、SISO-MC、SSK-MC)的性能差异;④探索分子通信在纳米网络中的应用前景。 其他说明:论文不仅提供了详细的理论分析和仿真验证,还给出了具体的代码实现,帮助读者更好地理解和复现实验结果。此外,论文还讨论了分子通信领域的标准化进展,以及未来可能的研究方向,如混合调制方案、自适应调制技术和纳米机器协作协议等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值