Tree
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 700 Accepted Submission(s): 145
Problem Description
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N
There are N - 1 edges numbered from 1 to N - 1.
Each node has a value and each edge has a value. The initial value is 0.
There are two kind of operation as follows:
● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.
● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.
After finished M operation on the tree, please output the value of each node and edge.
There are N - 1 edges numbered from 1 to N - 1.
Each node has a value and each edge has a value. The initial value is 0.
There are two kind of operation as follows:
● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.
● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.
After finished M operation on the tree, please output the value of each node and edge.
Input
The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.
The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.
The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.
For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.
The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.
For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
Output
For each test case, print a line “Case #t:”(without quotes, t means the index of the test case) at the beginning.
The second line contains N integer which means the value of each node.
The third line contains N - 1 integer which means the value of each edge according to the input order.
The second line contains N integer which means the value of each node.
The third line contains N - 1 integer which means the value of each edge according to the input order.
Sample Input
2 4 2 1 2 2 3 2 4 ADD1 1 4 1 ADD2 3 4 2 4 2 1 2 2 3 1 4 ADD1 1 4 5 ADD2 3 2 4
Sample Output
Case #1: 1 1 0 1 0 2 2 Case #2: 5 0 0 5 0 4 0
题意:两种操作,将u和v路径之间点的权值+w,将u和v路径之间边的权值+w
思路:树链剖分裸题
这题就是类似于在一段区间上+一个数,可以用经典的方法,只需在区间头+w,在区间尾-w即可
先将树形转线性,然后对每条链进行上述操作就好了
对于边操作有一点要注意,因为每个点只与它父亲的边绑定,所以要更新u和v之间的边的时候,u和v的祖先f所绑定的边是不能更新的
因为那条边是不在u和v的路径上的
这题时间卡的紧,输入挂是必须的
#pragma comment(linker,"/STACK:102400000,102400000")
#include
#include
#include
#include
#include
#include
using namespace std;
typedef __int64 ll;
const int MAXN = 100010;
int head[MAXN];
int next[MAXN<<1];
int edge[MAXN<<1];
int esz;
int deep[MAXN];
int son[MAXN];
int fa[MAXN];
int sz[MAXN];
int ord[MAXN];
int up[MAXN];
int ha[MAXN];
int bian[MAXN];
int id[MAXN<<1];
int dfs_clock;
int n;
ll ans1[MAXN];
ll ans2[MAXN];
ll ans3[MAXN];
ll ans4[MAXN];
inline int get(){
int ret=0;
char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)){
ret=ret*10+(int)(c-'0');
c=getchar();
}
return ret;
}
void init()
{
memset(head,-1,sizeof(head));
memset(ans1,0,sizeof(ans1));
memset(ans2,0,sizeof(ans2));
esz=0;dfs_clock=0;deep[0]=0;
}
void add(int u,int v,int i)
{
edge[esz]=v;
next[esz]=head[u];
id[esz]=i;
head[u]=esz++;
}
void dfs(int u,int p)
{
fa[u]=p;
deep[u]=deep[p]+1;
sz[u]=1;
son[u]=0;
for(int i=head[u];i!=-1;i=next[i]){
int v=edge[i];
if(v==p)continue;
dfs(v,u);
bian[v]=id[i];
sz[u]+=sz[v];
if(!son[u] || sz[v] > sz[son[u]]){
son[u]=v;
}
}
}
void dfs1(int u,int p)
{
ord[u]=++dfs_clock;
up[u]=p;
ha[ord[u]]=u;
if(!son[u])return;
dfs1(son[u],p);
for(int i=head[u];i!=-1;i=next[i]){
int v=edge[i];
if(v==fa[u] || v==son[u])continue;
dfs1(v,v);
}
}
void fx(int u,int v,int z)
{
int pu=up[u];
int pv=up[v];
while(pu != pv){
if(deep[pu]deep[v])swap(u,v);
ans1[ord[u]]+=z;
ans1[ord[v]+1]-=z;
}
void fx2(int u,int v,int z)
{
int pu=up[u];
int pv=up[v];
while(pu != pv){
if(deep[pu]deep[v])swap(u,v);
ans2[ord[son[u]]]+=z;
ans2[ord[v]+1]-=z;
}
int main()
{
int m;
int t,tt=0;
scanf("%d",&t);
while(t--)
{
n=get();m=get();
init();
for(int i=1;i