Mex
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 1892 Accepted Submission(s): 625
Problem Description
Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.
Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
Input
The input contains at most 20 test cases.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
Output
For each test case, output one line containing a integer denoting the answer.
Sample Input
3 0 1 3 5 1 0 2 0 1 0
Sample Output
5 24
题意:求所有区间mex的总和,定义mex[i,j]为区间[i,j]没有出现过的最小的数
思路:比较好的线段树题
先预处理出mex[1,i] (1=<i<=n)
然后预处理出每个位置 i 的下一个位置 next[i] ,假设现在位置的数为x,那么规定它的下一个位置为它后面离它最近的x的位置
然后 i 从1-n开始搞,每次删除i位置的数,然后在[ i+1,next[i]-1 ]这些位置找到满足位置p,且p位置的mex[i,p]值>value[i]
那么后面到next[i]-1的所有区间的mex都是大于value[i]的,因为mex满足单调性
然后就将mex[ p,next[i]-1 ]区间的值修改为value[i]
最后区间[i+1,n]求和就是以i+1为左端点,i+2~n为右端点的所有区间的mex和
涉及到的操作,区间更新,区间求和,区间求最大
#include
#include
#include
#include
#include
using namespace std;
#define maxn 200010
#define lson l,m,o<<1
#define rson m+1,r,o<<1|1
typedef __int64 ll;
ll sum[maxn<<2];
ll f[maxn<<2];
int mx[maxn<<2];
int n;
int a[maxn];
int mex[maxn];
int ha[maxn];
int next[maxn];
struct node{
int v,p;
}vex[maxn];
bool cmp(node a,node b)
{
if(a.v==b.v)return a.py?x:y;
}
void pushup(int o)
{
sum[o]=sum[o<<1]+sum[o<<1|1];
mx[o]=maxi(mx[o<<1],mx[o<<1|1]);
}
void pushdown(int o,int l)
{
if(f[o])
{
f[o<<1]=1;
f[o<<1|1]=1;
sum[o<<1]=mx[o]*(l-(l>>1));
sum[o<<1|1]=mx[o]*(l>>1);
mx[o<<1]=mx[o];
mx[o<<1|1]=mx[o];
f[o]=0;
}
}
void build(int l,int r,int o)
{
f[o]=0;
if(l==r){
sum[o]=mex[l];
mx[o]=mex[l];
return;
}
int m=l+r>>1;
build(lson);
build(rson);
pushup(o);
}
void update(int l,int r,int o,int L,int R,int v)
{
if(L<=l&&r<=R){
sum[o]=(ll)v*(r-l+1);
mx[o]=v;
f[o]=1;
return;
}
pushdown(o,r-l+1);
int m=l+r>>1;
if(L<=m)update(lson,L,R,v);
if(m>1;
int ans;
if(mx[o<<1]>v)ans=querymx(lson,v);
else ans=querymx(rson,v);
pushup(o);
return ans;
}
int main()
{
int i,j;
while(scanf("%d",&n)!=EOF)
{
if(!n)break;
int cnt=0;
memset(ha,0,sizeof(ha));
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
vex[i].v=a[i];
vex[i].p=i;
for(j=cnt;ja[i]){
int l=querymx(1,n,1,a[i]);
if(l