hdu4738(双连通分量)

本文解析了一道经典的算法题目“曹操之桥”,探讨如何在无向图中找到关键的桥,即一旦被移除会导致图分裂的边,并确定完成这一任务所需的最少兵力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Caocao's Bridges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1499    Accepted Submission(s): 566


Problem Description
Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.
 

Input
There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )

The input ends with N = 0 and M = 0.
 

Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.
 

Sample Input
3 3 1 2 7 2 3 4 3 1 4 3 2 1 2 7 2 3 4 0 0
 

Sample Output
-1 4

题意:给一个无向图,求找出一条边,使得删除这条边以后整个图就不连通了,找出满足的边里权值最小的那个,找不到输出-1

思路:这题一看就是无向图中找桥的问题,直接套板子,但是这题有两个超大的坑

            1.如果最开始图就不连通,直接输出0

            2.如果找到的桥的最小权值为0,则不能输出0,而要输出1(即使没有守卫也至少要派一个人去炸吧,桥不可能自己炸吧,又不是有特异功能?)

#include 
#include 
#include 
#include 
using namespace std;
#define maxn 1010
#define INF (~0U>>1)

int ans;
int head[1010];
int edge[1010*1010*2];
int next[1010*1010*2];
int ww[1010*1010*2];
int d;
int n,m;
int low[maxn];
int pre[maxn];
int dfs_clock;
int vis[maxn];
int vv[maxn][maxn];

int mini(int x,int y)
{
    return xpre[u]){
                if(vv[u][v]==1&&ans>ww[i])ans=ww[i];
            }
        }
        else if(pre[v]w)temp=w;
            vv[u][v]++;
            vv[v][u]++;
            add(u,v,w);
            add(v,u,w);
        }
        memset(vis,0,sizeof(vis));
        ddf(1);
        for(i=1;i<=n;i++)if(!vis[i])break;
        int ok=0;
        if(i<=n)ok=1;

        if(ok==1)printf("0\n");
        else {
        dfs_clock=0;
        memset(pre,0,sizeof(pre));
        memset(low,0,sizeof(low));
        ans=INF;
        dfs(1,0);


        if(ans==INF)printf("-1\n");
        else {

        if(ans==0)printf("%d\n",1);
        else printf("%d\n",ans);
        }


        }
    }
}
### 使用Tarjan算法计算强连通分量数量 #### 算法原理 Tarjan算法通过深度优先搜索(DFS)遍历有向图中的节点,记录访问顺序和低链值(low-link value),从而识别出所有的强连通分量。当发现一个节点的访问序号等于其最低可达节点编号时,表明找到了一个新的强连通分量。 #### 时间复杂度分析 该方法的时间效率取决于存储结构的选择。对于采用邻接表表示的稀疏图而言,整体性能更优,能够在线性时间内完成操作,即O(n+m)[^4];而针对稠密图则可能退化至平方级别(O())。 #### Python代码实现 下面给出一段Python程序用于演示如何基于NetworkX库构建并处理带权无环图(DAG),进而求解其中存在的全部SCC及其总数: ```python import networkx as nx def tarjan_scc(graph): index_counter = [0] stack = [] lowlinks = {} index = {} result = [] def strongconnect(node): # Set the depth index for this node to be the next available incrementing counter. index[node] = index_counter[0] lowlinks[node] = index_counter[0] index_counter[0] += 1 stack.append(node) try: successors = graph.successors(node) except AttributeError: successors = graph.neighbors(node) for successor in successors: if successor not in lowlinks: strongconnect(successor) lowlinks[node] = min(lowlinks[node], lowlinks[successor]) elif successor in stack: lowlinks[node] = min(lowlinks[node], index[successor]) if lowlinks[node] == index[node]: scc = set() while True: current_node = stack.pop() scc.add(current_node) if current_node == node: break result.append(scc) for node in graph.nodes(): if node not in lowlinks: strongconnect(node) return result if __name__ == "__main__": G = nx.DiGraph() # Create a directed graph object using NetworkX library edges_list = [(1, 2),(2, 3),(3, 1)] # Define edge list according to sample input data from hdu1269 problem statement[^5] G.add_edges_from(edges_list) components = tarjan_scc(G) print(f"Number of Strongly Connected Components found: {len(components)}") ``` 此段脚本定义了一个名为`tarjan_scc()`的功能函数接收网络对象作为参数,并返回由集合组成的列表形式的结果集,每个子集中包含了构成单个SCC的所有顶点。最后部分展示了创建测试用DAG实例的过程以及调用上述功能获取最终答案的方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值