题目:
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
tips:kSum问题中一个子问题,时间复杂度可以降到O(2).详细可以参考http://www.mamicode.com/info-detail-616720.html
public class Solution {
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
int n = A.length;
if( n == 0 ) return 0;
HashMap<Integer,Integer> ab = new HashMap<Integer,Integer>();
for(int a:A){
for(int b:B){
ab.put(a+b,ab.getOrDefault(a+b,0) + 1);
}
}
int res = 0;
for(int c:C){
for(int d:D){
int part2 = c + d;
int part1 = - part2;
res += ab.getOrDefault(part1,0);
}
}
return res;
}
}