侧而是
Gamma公式展示
Γ
(
n
)
=
(
n
−
1
)
!
∀
n
∈
N
\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N
Γ(n)=(n−1)!∀n∈N 是通过 Euler integral
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.