Description
Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N in such a way that:
- No two balls share the same label.
- The labeling satisfies several constrains like "The ball labeled with a is lighter than the one labeled with b".
Can you help windy to find a solution?
Input
The first line of input is the number of test case. The first line of each test case contains two integers, N (1 ≤ N ≤ 200) and M (0 ≤ M ≤ 40,000). The next M line each contain two integers a and b indicating the ball labeled with a must be lighter than the one labeled with b. (1 ≤ a, b ≤ N) There is a blank line before each test case.
Output
For each test case output on a single line the balls' weights from label 1 to label N. If several solutions exist, you should output the one with the smallest weight for label 1, then with the smallest weight for label 2, then with the smallest weight for label 3 and so on... If no solution exists, output -1 instead.
Sample Input
5 4 0 4 1 1 1 4 2 1 2 2 1 4 1 2 1 4 1 3 2
Sample Output
1 2 3 4 -1 -1 2 1 3 41 3 2 4
#include <IOSTREAM> #include <QUEUE> #include <CSTDLIB> using namespace std; #define NUM 201 int gmap[NUM][NUM]; int N,M; int degree[NUM]; int value[NUM]; priority_queue<int> que; bool tuopo() { int remain=N; int ic; for (ic=1;ic<=N;ic++) { if (degree[ic]==0) que.push(ic); } if (que.size()==0) return false; while (que.size()!=0) { int node=que.top(); value[node]=remain--; que.pop(); for (ic=1;ic<=N;ic++) { if (gmap[ic][node]==1) { gmap[ic][node]=-1; degree[ic]--; if (degree[ic]==0) que.push(ic); } } } if (remain==0) return true; else return false; } int main() { int a,b,T; cin>>T; while (T!=0) { memset(gmap,0,sizeof(gmap)); memset(degree,0,sizeof(degree)); memset(value,0,sizeof(value)); N=M=0; cin>>N>>M; while (M!=0) { cin>>a>>b; if(gmap[a][b]==0) { gmap[a][b]=1; degree[a]++; } M--; } if (tuopo()) { for (int ic=1;ic<=N;ic++) { cout<<value[ic]<<" "; } cout<<endl; } else cout<<"-1"<<endl; T--; } return 0; }
本文介绍了一个球排序问题的解决方法,通过使用优先队列实现拓扑排序算法来找到符合特定条件的球的排列顺序。该算法能够处理多达200个不同重量的球,并根据给定的约束条件确定每个球的标签。
2299

被折叠的 条评论
为什么被折叠?



