spark优化----资源调优

本文介绍Spark资源调优的关键参数及设置建议,包括Executor数量、内存及CPU核心数,以及Driver内存、并行度等配置,帮助提升Spark作业性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spark资源调优
资源参数参考示例
./bin/spark-submit \  
      --master yarn \
      --deploy-mode cluster \  
      --num-executors 128 \  
      --executor-memory 27G \  
      --executor-cores 8 \  
      --driver-memory 8G \  
      --conf spark.default.parallelism=1600 \  
      --conf spark.storage.memoryFraction=0.5 \  
      --conf spark.shuffle.memoryFraction=0.3 \ 


num-executors
  参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
  参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。

executor-memory
  参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
  参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作业申请到的总内存量(也就是所有Executor进程的内存总和),这个量是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的总内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

executor-cores
  参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
  参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

driver-memory
  参数说明:该参数用于设置Driver进程的内存。
  参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

park.default.parallelism
  参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
  参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

spark.storage.memoryFraction
  参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
  参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

spark.shuffle.memoryFraction
  参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
  参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
资源参数的调优,没有一个固定的值,需要同学们根据自己的实际情况(包括Spark作业中的shuffle操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况),同时参考本篇文章中给出的原理以及调优建议,合理地设置上述参数。
Spark SQL 的性能是大数据处理中非常关键的环节,尤其在面对大规模数据集时。以下是一些常见的 Spark SQL 性能方法和最佳实践: ### 3.1 数据分区与分布 合理的数据分区策略可以显著提升查询性能。建议将数据按照业务逻辑进行分区,并使用 `partitionBy` 对数据进行重新组织。此外,避免过多的小文件或过大的分区,保持每个分区的大小在合理的范围内(通常建议在 128MB 到 256MB 之间)[^2]。 ### 3.2 使用缓存机制 对于频繁访问的数据表或中间结果,可以使用 `cache()` 或 `persist()` 方法将其缓存到内存中,从而减少磁盘 I/O 操作。根据数据的重要性及使用频率选择不同的存储级别(如 `MEMORY_ONLY`, `MEMORY_AND_DISK` 等)[^2]。 ### 3.3 优化 Join 操作 Join 是最常见的操作之一,但也容易成为性能瓶颈。可以通过以下方式优化- **选择合适的 Join 类型**:例如 Broadcast Join、Shuffle Hash Join 和 Sort Merge Join,每种类型适用于不同场景。 - **使用 Hint 指定 Join 策略**:通过 SQL 提示(Hint)强制指定特定的 Join 策略,例如 `/*+ BROADCAST(table) */` 来触发 Broadcast Join [^1]。 - **整 Shuffle 分区数**:通过参数 `spark.sql.shuffle.partitions` 控制 Shuffle 分区数量,以平衡任务并行度和资源消耗。 ### 3.4 合理配置资源Spark 应用程序分配适当的计算资源至关重要。主要包括: - **Executor 数量与核心数**:增加 Executor 数量可以提高并行处理能力,但也要考虑集群的整体负载情况。 - **内存设置**:确保每个 Executor 获得足够的堆内存来处理数据,同时注意避免频繁的垃圾回收(GC)。如果发现 GC 频繁发生,则可能需要整 JVM 参数或减少对 JVM 对象的依赖 [^4]。 ### 3.5 使用 Structured APIs 尽量采用 DataFrame/Dataset API 替代 RDD,因为它们提供了更高级别的抽象并且能够更好地利用 Catalyst Optimizer 进行查询优化。这些结构化接口还能有效降低内存压力 [^4]。 ### 3.6 监控与诊断 利用 Spark UI 中的 Stage 页面监控作业执行情况,识别慢任务或失败任务的原因。此外,还可以借助工具如 SparkOscope 实现跨栈监控,进一步挖掘潜在的优化点 [^3]。 ### 3.7 查询计划分析 通过 `explain()` 方法查看物理执行计划,了解实际运行时的操作顺序以及是否应用了有效的优化规则。这有助于发现不必要的 Shuffle 或者其他低效操作。 ### 3.8 文件格式选择 选择高效的文件格式也会影响整体性能。Parquet 和 ORC 等列式存储格式通常比 JSON 或 CSV 更适合大规模数据分析,因为它们支持投影下推(Projection Pushdown)和谓词下推(Predicate Pushdown),减少了读取的数据量 。 ### 3.9 动态分区裁剪(Dynamic Partition Pruning) 启用动态分区裁剪功能可以帮助过滤掉不必要的分区,特别是在大表连接小表的情况下效果明显。相关配置项包括 `spark.sql.optimizer.dynamicPartitionPruning.enabled` 和 `spark.sql.optimizer.dynamicPartitionPruning.useStats` [^1]。 ### 3.10 压缩与编码 适当开启压缩算法(如 Snappy, Gzip)可以在一定程度上减少磁盘空间占用并加快数据传输速度。另外,使用字典编码等技术也能提升某些类型的查询效率 。 以上就是关于 Spark SQL 性能的一些常用方法和最佳实践。实施这些策略时,请结合具体应用场景灵活运用,并持续跟踪其对系统性能的影响。 ```python # 示例代码 - 设置 Shuffle 分区数量 spark.conf.set("spark.sql.shuffle.partitions", "200") # 示例代码 - 缓存表 df.cache() # 示例代码 - 查看查询计划 df.explain() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值