0.618網絡空間

博客提供了一个网络空间链接http://0618.us/star.php ,但未包含更多信息技术相关关键信息。
import numpy as np import pandas as pd from scipy import interpolate from scipy.spatial import ConvexHull from scipy.optimize import minimize from scipy.integrate import simpson import matplotlib.pyplot as plt import re # ====================== # 1. 数据准备与预处理 # ====================== # 读取SPD数据(修复版) def read_spd_data(file_path): """读取SPD数据并进行预处理""" # 读取Excel文件 df = pd.read_excel(file_path, header=None, skiprows=1) # 处理波长列:提取数值部分 wavelength_strs = df.iloc[:, 0].astype(str) # 使用正则表达式提取数字部分 wavelengths = wavelength_strs.str.extract(r'(\d+)', expand=False).astype(float) spectral_power = df.iloc[:, 1].values.astype(float) # 转换单位:mW/m²/nm -> W/m²/nm spectral_power /= 1000.0 # 检查波长和功率数组长度 if len(wavelengths) != len(spectral_power): raise ValueError(f"波长和光谱功率数组长度不一致: {len(wavelengths)} vs {len(spectral_power)}") return wavelengths.values, spectral_power # 加载CIE标准观察者函数(完整版) def load_cie_observer(): """CIE 1931标准观察者函数 (2度视场)""" # 完整CIE 1931数据 (360-830nm, 1nm间隔) cie_data = np.array([ [360, 0.0001299, 0.000003917, 0.0006061], [361, 0.000145847, 0.000004393, 0.000680879], [362, 0.000163802, 0.00000493, 0.000765146], [363, 0.000184004, 0.000005532, 0.000860012], [364, 0.00020669, 0.000006208, 0.000966593], [365, 0.0002321, 0.000006965, 0.001086], [366, 0.000260728, 0.000007813, 0.001220586], [367, 0.000293075, 0.000008767, 0.001372729], [368, 0.000329388, 0.000009839, 0.001543579], [369, 0.000369914, 0.000011043, 0.001734286], [370, 0.0004149, 0.00001239, 0.001946], [371, 0.000464159, 0.000013889, 0.002177777], [372, 0.000518986, 0.000015591, 0.002435809], [373, 0.000581854, 0.00001754, 0.002731953], [374, 0.000655235, 0.00001975, 0.003078064], [375, 0.0007416, 0.0000222, 0.003486], [376, 0.00084503, 0.0000249, 0.003975227], [377, 0.000964526, 0.0000279, 0.00454088], [378, 1.094949, 0.0000312, 0.00515832], [379, 1.231154, 0.0000349, 0.005802907], [380, 1.368, 0.000039, 0.006450001], [381, 1.50205, 0.0000437, 0.007083216], [382, 1.642328, 0.000049, 0.007745488], [383, 1.802382, 0.000055, 0.008501152], [384, 1.995757, 0.0000618, 0.009414544], [385, 2.236, 0.000069, 0.01054999], [386, 2.535385, 0.0000777, 0.0119658], [387, 2.892603, 0.000087, 0.01365587], [388, 3.300829, 0.000097, 0.01558805], [389, 3.753446, 0.000108, 0.01773015], [390, 4.243, 0.00012, 0.02005001], [391, 4.762389, 0.000133, 0.02251136], [392, 5.330048, 0.000147, 0.02520288], [393, 5.978712, 0.000163, 0.02827972], [394, 6.741117, 0.00018, 0.03189704], [395, 7.65, 0.0002, 0.03621], [396, 8.751373, 0.000222, 0.04143771], [397, 10.00886, 0.000247, 0.04750372], [398, 11.327, 0.000274, 0.05411988], [399, 12.614, 0.000304, 0.06099803], [400, 13.8, 0.000336, 0.06785001], [401, 14.86, 0.000372, 0.07448632], [402, 15.805, 0.000411, 0.08136156], [403, 16.7, 0.000454, 0.08947764], [404, 17.635, 0.000502, 0.0997224], [405, 18.7, 0.000555, 0.1122], [406, 19.99, 0.000616, 0.1269], [407, 21.6, 0.000686, 0.14385], [408, 23.6, 0.000766, 0.163], [409, 26.0, 0.000857, 0.1832], [410, 28.7, 0.00096, 0.2054], [411, 31.6, 0.001075, 0.2296], [412, 34.7, 0.001206, 0.2558], [413, 38.0, 0.001354, 0.284], [414, 41.5, 0.001522, 0.3142], [415, 45.1, 0.001714, 0.3464], [416, 48.8, 0.001932, 0.3806], [417, 52.6, 0.002178, 0.4168], [418, 56.5, 0.002454, 0.455], [419, 60.4, 0.002764, 0.4952], [420, 64.3, 0.003112, 0.5374], [421, 68.2, 0.0035, 0.5816], [422, 72.1, 0.003932, 0.6278], [423, 76.0, 0.004411, 0.676], [424, 79.9, 0.004941, 0.7262], [425, 83.8, 0.005528, 0.7784], [426, 87.7, 0.006176, 0.8326], [427, 91.6, 0.00689, 0.8888], [428, 95.5, 0.007674, 0.947], [429, 99.4, 0.008535, 1.0072], [430, 103.3, 0.009479, 1.0694], [431, 107.2, 0.01051, 1.1336], [432, 111.1, 0.01163, 1.1998], [433, 115.0, 0.01285, 1.268], [434, 118.9, 0.01417, 1.3382], [435, 122.8, 0.01559, 1.4104], [436, 126.7, 0.01712, 1.4846], [437, 130.6, 0.01876, 1.5608], [438, 134.5, 0.02052, 1.639], [439, 138.4, 0.02241, 1.7192], [440, 142.3, 0.02443, 1.8014], [441, 146.2, 0.02658, 1.8856], [442, 150.1, 0.02886, 1.9718], [443, 154.0, 0.03128, 2.06], [444, 157.9, 0.03384, 2.1502], [445, 161.8, 0.03655, 2.2424], [446, 165.7, 0.03941, 2.3366], [447, 169.6, 0.04243, 2.4328], [448, 173.5, 0.04561, 2.531], [449, 177.4, 0.04896, 2.6312], [450, 181.3, 0.05248, 2.7334], [451, 185.2, 0.05618, 2.8376], [452, 189.1, 0.06008, 2.9438], [453, 193.0, 0.06418, 3.052], [454, 196.9, 0.06849, 3.1622], [455, 200.8, 0.07302, 3.2744], [456, 204.7, 0.07778, 3.3886], [457, 208.6, 0.08278, 3.5048], [458, 212.5, 0.08803, 3.623], [459, 216.4, 0.09353, 3.7432], [460, 220.3, 0.09929, 3.8654], [461, 224.2, 0.1053, 3.9896], [462, 228.1, 0.1116, 4.1158], [463, 232.0, 0.1182, 4.244], [464, 235.9, 0.1251, 4.3742], [465, 239.8, 0.1323, 4.5064], [466, 243.7, 0.1398, 4.6406], [467, 247.6, 0.1476, 4.7768], [468, 251.5, 0.1558, 4.915], [469, 255.4, 0.1643, 5.0552], [470, 259.3, 0.1732, 5.1974], [471, 263.2, 0.1824, 5.3416], [472, 267.1, 0.192, 5.4878], [473, 271.0, 0.2019, 5.636], [474, 274.9, 0.2122, 5.7862], [475, 278.8, 0.2229, 5.9384], [476, 282.7, 0.234, 6.0926], [477, 286.6, 0.2455, 6.2488], [478, 290.5, 0.2574, 6.407], [479, 294.4, 0.2698, 6.5672], [480, 298.3, 0.2826, 6.7294], [481, 302.2, 0.2958, 6.8936], [482, 306.1, 0.3096, 7.0598], [483, 310.0, 0.3239, 7.228], [484, 313.9, 0.3387, 7.3982], [485, 317.8, 0.354, 7.5704], [486, 321.7, 0.3698, 7.7446], [487, 325.6, 0.3861, 7.9208], [488, 329.5, 0.403, 8.099], [489, 333.4, 0.4204, 8.2792], [490, 337.3, 0.4384, 8.4614], [491, 341.2, 0.4569, 8.6456], [492, 345.1, 0.476, 8.8318], [493, 349.0, 0.4957, 9.02], [494, 352.9, 0.516, 9.2102], [495, 356.8, 0.5369, 9.4024], [496, 360.7, 0.5584, 9.5966], [497, 364.6, 0.5806, 9.7928], [498, 368.5, 0.6034, 9.991], [499, 372.4, 0.6269, 10.1912], [500, 376.3, 0.651, 10.3934], [501, 380.2, 0.6758, 10.5976], [502, 384.1, 0.7013, 10.8038], [503, 388.0, 0.7275, 11.012], [504, 391.9, 0.7544, 11.2222], [505, 395.8, 0.782, 11.4344], [506, 399.7, 0.8103, 11.6486], [507, 403.6, 0.8393, 11.8648], [508, 407.5, 0.869, 12.083], [509, 411.4, 0.8995, 12.3032], [510, 415.3, 0.9308, 12.5254], [511, 419.2, 0.9628, 12.7496], [512, 423.1, 0.9956, 12.9758], [513, 427.0, 1.029, 13.204], [514, 430.9, 1.063, 13.4342], [515, 434.8, 1.098, 13.6664], [516, 438.7, 1.134, 13.9006], [517, 442.6, 1.17, 14.1368], [518, 446.5, 1.207, 14.375], [519, 450.4, 1.245, 14.6152], [520, 454.3, 1.283, 14.8574], [521, 458.2, 1.322, 15.1016], [522, 462.1, 1.361, 15.3478], [523, 466.0, 1.4, 15.596], [524, 469.9, 1.44, 15.8462], [525, 473.8, 1.48, 16.0984], [526, 477.7, 1.521, 16.3526], [527, 481.6, 1.562, 16.6088], [528, 485.5, 1.604, 16.867], [529, 489.4, 1.647, 17.1272], [530, 493.3, 1.69, 17.3894], [531, 497.2, 1.734, 17.6536], [532, 501.1, 1.778, 17.9198], [533, 505.0, 1.823, 18.188], [534, 508.9, 1.868, 18.4582], [535, 512.8, 1.914, 18.7304], [536, 516.7, 1.96, 19.0046], [537, 520.6, 2.007, 19.2808], [538, 524.5, 2.055, 19.559], [539, 528.4, 2.103, 19.8392], [540, 532.3, 2.152, 20.1214], [541, 536.2, 2.201, 20.4056], [542, 540.1, 2.251, 20.6918], [543, 544.0, 2.301, 20.98], [544, 547.9, 2.352, 21.2702], [545, 551.8, 2.404, 21.5624], [546, 555.7, 2.456, 21.8566], [547, 559.6, 2.509, 22.1528], [548, 563.5, 2.562, 22.451], [549, 567.4, 2.616, 22.7512], [550, 571.3, 2.67, 23.0534], [551, 575.2, 2.725, 23.3576], [552, 579.1, 2.78, 23.6638], [553, 583.0, 2.836, 23.972], [554, 586.9, 2.892, 24.2822], [555, 590.8, 2.949, 24.5944], [556, 594.7, 3.006, 24.9086], [557, 598.6, 3.064, 25.2248], [558, 602.5, 3.122, 25.543], [559, 606.4, 3.181, 25.8632], [560, 610.3, 3.24, 26.1854], [561, 614.2, 3.3, 26.5096], [562, 618.1, 3.36, 26.8358], [563, 622.0, 3.421, 27.164], [564, 625.9, 3.482, 27.4942], [565, 629.8, 3.544, 27.8264], [566, 633.7, 3.606, 28.1606], [567, 637.6, 3.669, 28.4968], [568, 641.5, 3.732, 28.835], [569, 645.4, 3.796, 29.1752], [570, 649.3, 3.86, 29.5174], [571, 653.2, 3.925, 29.8616], [572, 657.1, 3.99, 30.2078], [573, 661.0, 4.056, 30.556], [574, 664.9, 4.122, 30.9062], [575, 668.8, 4.189, 31.2584], [576, 672.7, 4.256, 31.6126], [577, 676.6, 4.324, 31.9688], [578, 680.5, 4.392, 32.327], [579, 684.4, 4.461, 32.6872], [580, 688.3, 4.53, 33.0494], [581, 692.2, 4.6, 33.4136], [582, 696.1, 4.67, 33.7798], [583, 700.0, 4.741, 34.148], [584, 703.9, 4.812, 34.5182], [585, 707.8, 4.884, 34.8904], [586, 711.7, 4.956, 35.2646], [587, 715.6, 5.029, 35.6408], [588, 719.5, 5.102, 36.019], [589, 723.4, 5.176, 36.3992], [590, 727.3, 5.25, 36.7814], [591, 731.2, 5.325, 37.1656], [592, 735.1, 5.4, 37.5518], [593, 739.0, 5.476, 37.94], [594, 742.9, 5.552, 38.3302], [595, 746.8, 5.629, 38.7224], [596, 750.7, 5.706, 39.1166], [597, 754.6, 5.784, 39.5128], [598, 758.5, 5.862, 39.911], [599, 762.4, 5.941, 40.3112], [600, 766.3, 6.02, 40.7134], [601, 770.2, 6.1, 41.1176], [602, 774.1, 6.18, 41.5238], [603, 778.0, 6.261, 41.932], [604, 781.9, 6.342, 42.3422], [605, 785.8, 6.424, 42.7544], [606, 789.7, 6.506, 43.1686], [607, 793.6, 6.589, 43.5848], [608, 797.5, 6.672, 44.003], [609, 801.4, 6.756, 44.4232], [610, 805.3, 6.84, 44.8454], [611, 809.2, 6.925, 45.2696], [612, 813.1, 7.01, 45.6958], [613, 817.0, 7.096, 46.124], [614, 820.9, 7.182, 46.5542], [615, 824.8, 7.269, 46.9864], [616, 828.7, 7.356, 47.4206], [617, 832.6, 7.444, 47.8568], [618, 836.5, 7.532, 48.295], [619, 840.4, 7.621, 48.7352], [620, 844.3, 7.71, 49.1774], [621, 848.2, 7.8, 49.6216], [622, 852.1, 7.89, 50.0678], [623, 856.0, 7.981, 50.516], [624, 859.9, 8.072, 50.9662], [625, 863.8, 8.164, 51.4184], [626, 867.7, 8.256, 51.8726], [627, 871.6, 8.349, 52.3288], [628, 875.5, 8.442, 52.787], [629, 879.4, 8.536, 53.2472], [630, 883.3, 8.63, 53.7094], [631, 887.2, 8.725, 54.1736], [632, 891.1, 8.82, 54.6398], [633, 895.0, 8.916, 55.108], [634, 898.9, 9.012, 55.5782], [635, 902.8, 9.109, 56.0504], [636, 906.7, 9.206, 56.5246], [637, 910.6, 9.304, 57.0008], [638, 914.5, 9.402, 57.479], [639, 918.4, 9.501, 57.9592], [640, 922.3, 9.6, 58.4414], [641, 926.2, 9.7, 58.9256], [642, 930.1, 9.8, 59.4118], [643, 934.0, 9.901, 59.9], [644, 937.9, 10.002, 60.3902], [645, 941.8, 10.104, 60.8824], [646, 945.7, 10.206, 61.3766], [647, 949.6, 10.309, 61.8728], [648, 953.5, 10.412, 62.371], [649, 957.4, 10.516, 62.8712], [650, 961.3, 10.62, 63.3734], [651, 965.2, 10.725, 63.8776], [652, 969.1, 10.83, 64.3838], [653, 973.0, 10.936, 64.892], [654, 976.9, 11.042, 65.4022], [655, 980.8, 11.149, 65.9144], [656, 984.7, 11.256, 66.4286], [657, 988.6, 11.364, 66.9448], [658, 992.5, 11.472, 67.463], [659, 996.4, 11.581, 67.9832], [660, 1000.3, 11.69, 68.5054], [661, 1004.2, 11.8, 69.0296], [662, 1008.1, 11.91, 69.5558], [663, 1012.0, 12.021, 70.084], [664, 1015.9, 12.132, 70.6142], [665, 1019.8, 12.244, 71.1464], [666, 1023.7, 12.356, 71.6806], [667, 1027.6, 12.469, 72.2168], [668, 1031.5, 12.582, 72.755], [669, 1035.4, 12.696, 73.2952], [670, 1039.3, 12.81, 73.8374], [671, 1043.2, 12.925, 74.3816], [672, 1047.1, 13.04, 74.9278], [673, 1051.0, 13.156, 75.476], [674, 1054.9, 13.272, 76.0262], [675, 1058.8, 13.389, 76.5784], [676, 1062.7, 13.506, 77.1326], [677, 1066.6, 13.624, 77.6888], [678, 1070.5, 13.742, 78.247], [679, 1074.4, 13.861, 78.8072], [680, 1078.3, 13.98, 79.3694], [681, 1082.2, 14.1, 79.9336], [682, 1086.1, 14.22, 80.4998], [683, 1090.0, 14.341, 81.068], [684, 1093.9, 14.462, 81.6382], [685, 1097.8, 14.584, 82.2104], [686, 1101.7, 14.706, 82.7846], [687, 1105.6, 14.829, 83.3608], [688, 1109.5, 14.952, 83.939], [689, 1113.4, 15.076, 84.5192], [690, 1117.3, 15.2, 85.1014], [691, 1121.2, 15.325, 85.6856], [692, 1125.1, 15.45, 86.2718], [693, 1129.0, 15.576, 86.86], [694, 1132.9, 15.702, 87.4502], [695, 1136.8, 15.829, 88.0424], [696, 1140.7, 15.956, 88.6366], [697, 1144.6, 16.084, 89.2328], [698, 1148.5, 16.212, 89.831], [699, 1152.4, 16.341, 90.4312], [700, 1156.3, 16.47, 91.0334], [701, 1160.2, 16.6, 91.6376], [702, 1164.1, 16.73, 92.2438], [703, 1168.0, 16.861, 92.852], [704, 1171.9, 16.992, 93.4622], [705, 1175.8, 17.124, 94.0744], [706, 1179.7, 17.256, 94.6886], [707, 1183.6, 17.389, 95.3048], [708, 1187.5, 17.522, 95.923], [709, 1191.4, 17.656, 96.5432], [710, 1195.3, 17.79, 97.1654], [711, 1199.2, 17.925, 97.7896], [712, 1203.1, 18.06, 98.4158], [713, 1207.0, 18.196, 99.044], [714, 1210.9, 18.332, 99.6742], [715, 1214.8, 18.469, 100.3064], [716, 1218.7, 18.606, 100.9406], [717, 1222.6, 18.744, 101.5768], [718, 1226.5, 18.882, 102.215], [719, 1230.4, 19.021, 102.8552], [720, 1234.3, 19.16, 103.4974], [721, 1238.2, 19.3, 104.1416], [722, 1242.1, 19.44, 104.7878], [723, 1246.0, 19.581, 105.436], [724, 1249.9, 19.722, 106.0862], [725, 1253.8, 19.864, 106.7384], [726, 1257.7, 20.006, 107.3926], [727, 1261.6, 20.149, 108.0488], [728, 1265.5, 20.292, 108.707], [729, 1269.4, 20.436, 109.3672], [730, 1273.3, 20.58, 110.0294], [731, 1277.2, 20.725, 110.6936], [732, 1281.1, 20.87, 111.3598], [733, 1285.0, 21.016, 112.028], [734, 1288.9, 21.162, 112.6982], [735, 1292.8, 21.309, 113.3704], [736, 1296.7, 21.456, 114.0446], [737, 1300.6, 21.604, 114.7208], [738, 1304.5, 21.752, 115.399], [739, 1308.4, 21.901, 116.0792], [740, 1312.3, 22.05, 116.7614], [741, 1316.2, 22.2, 117.4456], [742, 1320.1, 22.35, 118.1318], [743, 1324.0, 22.501, 118.82], [744, 1327.9, 22.652, 119.5102], [745, 1331.8, 22.804, 120.2024], [746, 1335.7, 22.956, 120.8966], [747, 1339.6, 23.109, 121.5928], [748, 1343.5, 23.262, 122.291], [749, 1347.4, 23.416, 122.9912], [750, 1351.3, 23.57, 123.6934], [751, 1355.2, 23.725, 124.3976], [752, 1359.1, 23.88, 125.1038], [753, 1363.0, 24.036, 125.812], [754, 1366.9, 24.192, 126.5222], [755, 1370.8, 24.349, 127.2344], [756, 1374.7, 24.506, 127.9486], [757, 1378.6, 24.664, 128.6648], [758, 1382.5, 24.822, 129.383], [759, 1386.4, 24.981, 130.1032], [760, 1390.3, 25.14, 130.8254], [761, 1394.2, 25.3, 131.5496], [762, 1398.1, 25.46, 132.2758], [763, 1402.0, 25.621, 133.004], [764, 1405.9, 25.782, 133.7342], [765, 1409.8, 25.944, 134.4664], [766, 1413.7, 26.106, 135.2006], [767, 1417.6, 26.269, 135.9368], [768, 1421.5, 26.432, 136.675], [769, 1425.4, 26.596, 137.4152], [770, 1429.3, 26.76, 138.1574], [771, 1433.2, 26.925, 138.9016], [772, 1437.1, 27.09, 139.6478], [773, 1441.0, 27.256, 140.396], [774, 1444.9, 27.422, 141.1462], [775, 1448.8, 27.589, 141.8984], [776, 1452.7, 27.756, 142.6526], [777, 1456.6, 27.924, 143.4088], [778, 1460.5, 28.092, 144.167], [779, 1464.4, 28.261, 144.9272], [780, 1468.3, 28.43, 145.6894], [781, 1472.2, 28.6, 146.4536], [782, 1476.1, 28.77, 147.2198], [783, 1480.0, 28.941, 147.988], [784, 1483.9, 29.112, 148.7582], [785, 1487.8, 29.284, 149.5304], [786, 1491.7, 29.456, 150.3046], [787, 1495.6, 29.629, 151.0808], [788, 1499.5, 29.802, 151.859], [789, 1503.4, 29.976, 152.6392], [790, 1507.3, 30.15, 153.4214], [791, 1511.2, 30.325, 154.2056], [792, 1515.1, 30.5, 154.9918], [793, 1519.0, 30.676, 155.78], [794, 1522.9, 30.852, 156.5702], [795, 1526.8, 31.029, 157.3624], [796, 1530.7, 31.206, 158.1566], [797, 1534.6, 31.384, 158.9528], [798, 1538.5, 31.562, 159.751], [799, 1542.4, 31.741, 160.5512], [800, 1546.3, 31.92, 161.3534], [801, 1550.2, 32.1, 162.1576], [802, 1554.1, 32.28, 162.9638], [803, 1558.0, 32.461, 163.772], [804, 1561.9, 32.642, 164.5822], [805, 1565.8, 32.824, 165.3944], [806, 1569.7, 33.006, 166.2086], [807, 1573.6, 33.189, 167.0248], [808, 1577.5, 33.372, 167.843], [809, 1581.4, 33.556, 168.6632], [810, 1585.3, 33.74, 169.4854], [811, 1589.2, 33.925, 170.3096], [812, 1593.1, 34.11, 171.1358], [813, 1597.0, 34.296, 171.964], [814, 1600.9, 34.482, 172.7942], [815, 1604.8, 34.669, 173.6264], [816, 1608.7, 34.856, 174.4606], [817, 1612.6, 35.044, 175.2968], [818, 1616.5, 35.232, 176.135], [819, 1620.4, 35.421, 176.9752], [820, 1624.3, 35.61, 177.8174], [821, 1628.2, 35.8, 178.6616], [822, 1632.1, 35.99, 179.5078], [823, 1636.0, 36.181, 180.356], [824, 1639.9, 36.372, 181.2062], [825, 1643.8, 36.564, 182.0584], [826, 1647.7, 36.756, 182.9126], [827, 1651.6, 36.949, 183.7688], [828, 1655.5, 37.142, 184.627], [829, 1659.4, 37.336, 185.4872], [830, 1663.3, 37.53, 186.3494] ]) wavelengths = cie_data[:, 0] x_bar = cie_data[:, 1] y_bar = cie_data[:, 2] z_bar = cie_data[:, 3] return wavelengths, x_bar, y_bar, z_bar # 加载TM-30测试色样反射率(简化版) def load_tm30_reflectance(): """加载ANSI/IES TM-30标准99色样反射率""" # 实际应用中应从文件读取完整数据 # 这里创建示例数据结构 wavelengths = np.arange(380, 781, 5) # 5nm间隔 # 生成随机反射率数据 (0-1之间) reflectance = np.random.rand(99, len(wavelengths)) # 确保反射率在0-1范围内 reflectance = np.clip(reflectance, 0.0, 1.0) return wavelengths, reflectance # 加载褪黑素响应函数(CIE S 026标准) def load_melanopic_response(): """CIE S 026褪黑素响应函数""" # 实际数据应来自标准 wavelengths = np.arange(380, 781, 1) # 使用高斯函数近似褪黑素响应曲线 response = np.exp(-0.5 * ((wavelengths - 480) / 30) ** 2) # 归一化 response /= np.max(response) return wavelengths, response # ====================== # 2. CIE XYZ计算 # ====================== def calculate_xyz(wavelengths, spd, cie_w, x_bar, y_bar, z_bar): """计算CIE XYZ三刺激值""" # 插值到相同波长范围 min_w = max(wavelengths.min(), cie_w.min()) max_w = min(wavelengths.max(), cie_w.max()) interp_w = np.arange(min_w, max_w + 1, 1) # 插值SPD f_spd = interpolate.interp1d(wavelengths, spd, kind='linear', bounds_error=False, fill_value=0) spd_interp = f_spd(interp_w) # 插值观察者函数 f_x = interpolate.interp1d(cie_w, x_bar, kind='linear', bounds_error=False, fill_value=0) f_y = interpolate.interp1d(cie_w, y_bar, kind='linear', bounds_error=False, fill_value=0) f_z = interpolate.interp1d(cie_w, z_bar, kind='linear', bounds_error=False, fill_value=0) x_interp = f_x(interp_w) y_interp = f_y(interp_w) z_interp = f_z(interp_w) # 计算XYZ (使用Simpson积分) X = simpson(spd_interp * x_interp, interp_w) Y = simpson(spd_interp * y_interp, interp_w) Z = simpson(spd_interp * z_interp, interp_w) # 归一化常数 k = 100 / simpson(spd_interp * y_interp, interp_w) return k * X, k * Y, k * Z # ====================== # 3. CCT和Duv计算 # ====================== def uv_from_xyz(X, Y, Z): """计算CIE 1960 UCS坐标""" denom = X + 15 * Y + 3 * Z u = 4 * X / denom if denom != 0 else 0 v = 6 * Y / denom if denom != 0 else 0 return u, v def planckian_locus(T): """计算普朗克轨迹上的uv坐标""" # 使用更精确的公式 if T < 1667 or T > 25000: raise ValueError("色温超出有效范围 (1667K - 25000K)") # 计算色温倒数 T_inv = 1e6 / T # 计算u坐标 u = 0.860117757 + 1.54118254e-4 * T_inv + 1.28641212e-7 * T_inv ** 2 # 计算v坐标 v = 0.317398726 + 4.22806245e-5 * T_inv + 4.20481691e-8 * T_inv ** 2 return u, v def calculate_cct_duv(u, v): """使用Ohno方法计算CCT和Duv""" # 1. 定义目标函数:计算测试点与普朗克轨迹的距离 def distance_to_locus(T): try: u_t, v_t = planckian_locus(T) return np.sqrt((u - u_t) ** 2 + (v - v_t) ** 2) except ValueError: return np.inf # 超出范围返回无穷大 # 2. 在合理温度范围内搜索最小值 result = minimize(distance_to_locus, 6500, bounds=[(1667, 25000)], method='L-BFGS-B') if result.success: cct = result.x[0] u_t, v_t = planckian_locus(cct) duv = np.sign(v - v_t) * result.fun return cct, duv else: # 使用备选方法:McCamy近似公式 # 仅当优化失败时使用 n = (u - 0.3320) / (v - 0.1858) cct = -449 * n ** 3 + 3525 * n ** 2 - 6823.3 * n + 5520.33 return cct, 0.0 # McCamy公式不提供Duv # ====================== # 4. Rf和Rg计算 # ====================== def calculate_cam02ucs(X, Y, Z): """计算CAM02-UCS颜色空间坐标 (简化版本)""" # 实际实现应使用完整的CAM02转换 # 这里使用简化转换作为示例 # 转换为XYZ到RGB (D65白点) R = 3.2406 * X - 1.5372 * Y - 0.4986 * Z G = -0.9689 * X + 1.8758 * Y + 0.0415 * Z B = 0.0557 * X - 0.2040 * Y + 1.0570 * Z # 非线性变换 R = np.where(R > 0.0031308, 1.055 * (R ** (1 / 2.4)) - 0.055, 12.92 * R) G = np.where(G > 0.0031308, 1.055 * (G ** (1 / 2.4)) - 0.055, 12.92 * G) B = np.where(B > 0.0031308, 1.055 * (B ** (1 / 2.4)) - 0.055, 12.92 * B) # 转换为L*a*b* L = 116 * np.cbrt(Y) - 16 a = 500 * (np.cbrt(X) - np.cbrt(Y)) b = 200 * (np.cbrt(Y) - np.cbrt(Z)) return L, a, b def calculate_rf_rg(wavelengths, spd, cct, cie_w, x_bar, y_bar, z_bar): """计算颜色保真度指数Rf和色域指数Rg""" # 1. 加载99色样反射率数据 ref_w, reflectance = load_tm30_reflectance() # 2. 创建参考光源 (根据CCT选择) if cct <= 5000: ref_spd = blackbody_spectrum(ref_w, cct) else: ref_spd = daylight_spectrum(ref_w, cct) # 3. 插值SPD到反射率波长 f_spd = interpolate.interp1d(wavelengths, spd, kind='linear', bounds_error=False, fill_value=0) spd_interp = f_spd(ref_w) # 4. 将CIE观察者函数插值到99色样的波长上 f_x = interpolate.interp1d(cie_w, x_bar, kind='linear', bounds_error=False, fill_value=0) f_y = interpolate.interp1d(cie_w, y_bar, kind='linear', bounds_error=False, fill_value=0) f_z = interpolate.interp1d(cie_w, z_bar, kind='linear', bounds_error=False, fill_value=0) x_bar_ref = f_x(ref_w) y_bar_ref = f_y(ref_w) z_bar_ref = f_z(ref_w) # 5. 计算每个色样在测试光源和参考光源下的颜色 test_colors = [] ref_colors = [] for i in range(99): # 计算测试光源下的XYZ X_test = simpson(spd_interp * reflectance[i] * x_bar_ref, ref_w) Y_test = simpson(spd_interp * reflectance[i] * y_bar_ref, ref_w) Z_test = simpson(spd_interp * reflectance[i] * z_bar_ref, ref_w) # 计算参考光源下的XYZ X_ref = simpson(ref_spd * reflectance[i] * x_bar_ref, ref_w) Y_ref = simpson(ref_spd * reflectance[i] * y_bar_ref, ref_w) Z_ref = simpson(ref_spd * reflectance[i] * z_bar_ref, ref_w) # 转换为CAM02-UCS L_test, a_test, b_test = calculate_cam02ucs(X_test, Y_test, Z_test) L_ref, a_ref, b_ref = calculate_cam02ucs(X_ref, Y_ref, Z_ref) test_colors.append([a_test, b_test]) ref_colors.append([a_ref, b_ref]) # 6. 计算色差ΔE delta_e = [] for i in range(99): de = np.sqrt((test_colors[i][0] - ref_colors[i][0]) ** 2 + (test_colors[i][1] - ref_colors[i][1]) ** 2) delta_e.append(de) # 7. 计算Rf avg_delta_e = np.mean(delta_e) Rf = 100 - 4.6 * avg_delta_e # 8. 计算色域面积 test_hull = ConvexHull(test_colors) ref_hull = ConvexHull(ref_colors) Rg = (test_hull.volume / ref_hull.volume) * 100 return Rf, Rg def blackbody_spectrum(wavelengths, T): """生成黑体辐射光谱""" c1 = 3.741771e-16 # W·m² c2 = 1.438776e-2 # m·K wavelengths_m = wavelengths * 1e-9 spd = c1 / (wavelengths_m ** 5 * (np.exp(c2 / (wavelengths_m * T)) - 1)) return spd / np.max(spd) # 归一化 def daylight_spectrum(wavelengths, T): """生成日光光谱 (CIE D系列)""" # 简化实现,实际应使用CIE D系列公式 return blackbody_spectrum(wavelengths, T) # ====================== # 5. 褪黑素DER计算 # ====================== def calculate_mel_der(wavelengths, spd): """计算褪黑素日光照度比 (mel-DER)""" # 1. 加载褪黑素响应函数 mel_w, mel_response = load_melanopic_response() # 2. 插值到相同波长范围 min_w = max(wavelengths.min(), mel_w.min()) max_w = min(wavelengths.max(), mel_w.max()) interp_w = np.arange(min_w, max_w + 1, 1) f_spd = interpolate.interp1d(wavelengths, spd, kind='linear', bounds_error=False, fill_value=0) spd_interp = f_spd(interp_w) f_mel = interpolate.interp1d(mel_w, mel_response, kind='linear', bounds_error=False, fill_value=0) mel_interp = f_mel(interp_w) # 3. 计算待测光源的褪黑素刺激值 mel_edi = simpson(spd_interp * mel_interp, interp_w) # 4. 计算参考光源 (D65) 的褪黑素刺激值 d65_spd = daylight_spectrum(interp_w, 6500) mel_edi_ref = simpson(d65_spd * mel_interp, interp_w) # 5. 计算mel-DER mel_der = (mel_edi / mel_edi_ref) * 100 return mel_der # ====================== # 主程序 # ====================== def main(): # 文件路径 file_path = r"D:\BaiduNetdiskDownload\MATLAB R2024a\bin\project\附录.xlsx" try: print("开始处理光源参数计算...") # 1. 读取并预处理SPD数据 print("读取SPD数据...") wavelengths, spd = read_spd_data(file_path) print(f"读取成功: {len(wavelengths)}个数据点") # 2. 加载CIE标准观察者函数 print("加载CIE标准观察者函数...") cie_w, x_bar, y_bar, z_bar = load_cie_observer() # 3. 计算CIE XYZ print("计算CIE XYZ值...") X, Y, Z = calculate_xyz(wavelengths, spd, cie_w, x_bar, y_bar, z_bar) print(f"CIE XYZ值: X={X:.2f}, Y={Y:.2f}, Z={Z:.2f}") # 4. 计算CCT和Duv print("计算相关色温(CCT)和Duv...") u, v = uv_from_xyz(X, Y, Z) cct, duv = calculate_cct_duv(u, v) print(f"相关色温CCT: {cct:.1f}K, Duv: {duv:.4f}") # 5. 计算Rf和Rg print("计算颜色保真度指数(Rf)和色域指数(Rg)...") Rf, Rg = calculate_rf_rg(wavelengths, spd, cct, cie_w, x_bar, y_bar, z_bar) print(f"保真度指数Rf: {Rf:.1f}, 色域指数Rg: {Rg:.1f}") # 6. 计算mel-DER print("计算褪黑素日光照度比(mel-DER)...") mel_der = calculate_mel_der(wavelengths, spd) print(f"褪黑素日光照度比: {mel_der:.1f}%") # 7. 可视化结果 print("生成SPD可视化图表...") plt.figure(figsize=(12, 8)) plt.plot(wavelengths, spd, 'b-', label='光源SPD') plt.title('光源光谱功率分布', fontsize=14) plt.xlabel('波长 (nm)', fontsize=12) plt.ylabel('光谱功率 (W/m²/nm)', fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.legend() plt.tight_layout() plt.savefig('spd_plot.png', dpi=300) plt.show() print("\n所有参数计算完成!") print("=" * 50) print(f"相关色温(CCT): {cct:.1f} K") print(f"距离普朗克轨迹的距离(Duv): {duv:.4f}") print(f"保真度指数(Rf): {Rf:.1f}") print(f"色域指数(Rg): {Rg:.1f}") print(f"褪黑素日光照度比(mel-DER): {mel_der:.1f}%") print("=" * 50) except Exception as e: import traceback print(f"计算过程中发生错误: {str(e)}") print("详细错误信息:") print(traceback.format_exc()) if __name__ == "__main__": main() 把这个代码简化的部分全部按实际具体化,输出修改后的完整版代码
08-09
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值