2.7mnist手写数字识别之训练调试与优化精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)
目录
2.7mnist手写数字识别之训练调试与优化精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)
概述
训练过程优化思路主要有如下五个关键环节:
1. 计算分类准确率,观测模型训练效果。
交叉熵损失函数只能作为优化目标,无法直接准确衡量模型的训练效果。准确率可以直接衡量训练效果,但由于其离散性质,不适合做为损失函数优化神经网络。
2. 检查模型训练过程,识别潜在问题。
如果模型的损失或者评估指标表现异常,通常需要打印模型每一层的输入和输出来定位问题,分析每一层的内容来获取错误的原因。
3. 加入校验或测试,更好评价模型效果。
理想的模型训练结果是在训练集和验证集上均有较高的准确率,如果训练集上的准确率高于验证集,说明网络训练程度不够;如果验证集的准确率高于训练集,可能是发生了过拟合现象。通过在优化目标中加入正则化项的办法,解决过拟合的问题。
4. 加入正则化项,避免模型过拟合。
飞桨框架支持为整体参数加入正则化项,这是通常的做法。此外,飞桨框架也支持为某一层或某一部分的网络单独加入正则化项,以达到精细调整参数训练的效果。
5. 可视化分析。
用户不仅可以通过打印或使用matplotlib库作图,飞桨还提供了更专业的可视化分析工具VisualDL,提供便捷的可视化分析方法。
计算模型的分类准确率
准确率是一个直观衡量分类模型效果的指标,由于这个指标是离散的,因此不适合作为损失函数来优化。通常情况下,交叉熵损失越小的模型,分类的准确率也越高。基于分类准确率,我们可以公平的比较两种损失函数的优劣,例如【手写数字识别】之损失函数 章节中均方误差和交叉熵的比较。
飞桨提供了计算分类准确率的API,使用fluid.layers.accuracy可以直接计算准确率,该API的输入参数input为预测的分类结果predict,输入参数label为数据真实的label。
在下述代码中,我们在模型前向计算过程forward函数中计算分类准确率,并在训练时打印每个批次样本的分类准确率。
# 加载相关库
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image
import gzip
import json
# 定义数据集读取器
def load_data(mode='train'):
# 读取数据文件
datafile = './work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
data = json.load(gzip.open(datafile))
# 读取数据集中的训练集,验证集和测试集
train_set, val_set, eval_set = data
# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
IMG_ROWS = 28
IMG_COLS = 28
# 根据输入mode参数决定使用训练集,验证集还是测试
if mode == 'train':
imgs = train_set[0]
labels = train_set[1]
elif mode == 'valid':
imgs = val_set[0]
labels = val_set[1]
elif mode == 'eval':
imgs = eval_set[0]
labels = eval_set[1]
# 获得所有图像的数量
imgs_length = len(imgs)
# 验证图像数量和标签数量是否一致
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(
len(imgs), len(labels))
index_list = list(range(imgs_length))
# 读入数据时用到的batchsize
BATCHSIZE = 100
# 定义数据生成器
def data_generator():
# 训练模式下,打乱训练数据
if mode == 'train':
random.shuffle(index_list)
imgs_list = []
labels_list = []
# 按照索引读取数据
for i in index_list:
# 读取图像和标签,转换其尺寸和类型
img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
label = np.reshape(labels[i], [1]).astype('int64')
imgs_list.append(img)
labels_list.append(label)
# 如果当前数据缓存达到了batch size,就返回一个批次数据
if len(imgs_list) == BATCHSIZE:
yield np.array(imgs_list), np.array(labels_list)
# 清空数据缓存列表
imgs_list = []
labels_list = []
# 如果剩余数据的数目小于BATCHSIZE,
# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
if len(imgs_list) > 0:
yield np.array(imgs_list), np.array(labels_list)
return data_generator
# 定义模型结构
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义一个卷积层,使用relu激活函数
self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个卷积层,使用relu激活函数
self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个全连接层,输出节点数为10
self.fc = Linear(input_dim=980, output_dim=10, act='softmax')
# 定义网络的前向计算过程
def forward(self, inputs, label):
x = self.conv1(inputs)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = fluid.layers.reshape(x, [x.shape[0], 980])
x = self.fc(x)
#加入了准确率的判断
if label is not None:
acc = fluid.layers.accuracy(input=x, label=label)
return x, acc
else:
return x
#调用加载数据的函数
train_loader = load_data('train')
#在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = False
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
with fluid.dygraph.guard(place):
model = MNIST()
model.train()
#四种优化算法的设置方案,可以逐一尝试效果
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())
#optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.01, momentum=0.9, parameter_list=model.parameters())
#optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.01, parameter_list=model.parameters())
#optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.01, parameter_list=model.parameters())
EPOCH_NUM = 5
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据
image_data, label_data = data
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
#前向计算的过程,同时拿到模型输出值和分类准确率
predict, acc = model(image, label)
#计算损失,取一个批次样本损失的平均值
loss = fluid.layers.cross_entropy(predict, label)
avg_loss = fluid.layers.mean(loss)
#每训练了200批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(), acc.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
#保存模型参数
fluid.save_dygraph(model.state_dict(), 'mnist')
检查模型训练过程,识别潜在训练问题
使用飞桨动态图可以方便的查看和调试训练的执行过程。在网络定义的Forward
函数中,可以打印每一层输入输出的尺寸,以及每层网络的参数。通过查看这些信息,不仅可以更好地理解训练的执行过程,还可以发现潜在问题,或者启发继续优化的思路。
在下述程序中,使用check_shape
变量控制是否打印“尺寸”,验证网络结构是否正确。使用check_content
变量控制是否打印“内容值”,验证数据分布是否合理。假如在训练中发现中间层的部分输出持续为0,说明该部分的网络结构设计存在问题,没有充分利用。
# 定义模型结构
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义一个卷积层,使用relu激活函数
self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个卷积层,使用relu激活函数
self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个全连接层,输出节点数为10
self.fc = Linear(input_dim=980, output_dim=10, act='softmax')
# 加入对每一层输入和输出的尺寸和数据内容的打印,根据check参数决策是否打印每层的参数和输出尺寸
def forward(self, inputs, label=None, check_shape=False, check_content=False):
# 给不同层的输出不同命名,方便调试
outputs1 = self.conv1(inputs)
outputs2 = self.pool1(outputs1)
outputs3 = self.conv2(outputs2)
outputs4 = self.pool2(outputs3)
_outputs4 = fluid.layers.reshape(outputs4, [outputs4.shape[0], -1])
outputs5 = self.fc(_outputs4)
# 选择是否打印神经网络每层的参数尺寸和输出尺寸,验证网络结构是否设置正确
if check_shape:
# 打印每层网络设置的超参数-卷积核尺寸,卷积步长,卷积padding,池化核尺寸
print("\n########## print network layer's superparams ##############")
print("conv1-- kernel_size:{}, padding:{}, stride:{}".format(self.conv1.weight.shape, self.conv1._padding, self.conv1._stride))
print("conv2-- kernel_size:{}, padding:{}, stride:{}".format(self.conv2.weight.shape, self.conv2._padding, self.conv2._stride))
print("pool1-- pool_type:{}, pool_size:{}, pool_stride:{}".format(self.pool1._pool_type, self.pool1._pool_size, self.pool1._pool_stride))
print("pool2-- pool_type:{}, poo2_size:{}, pool_stride:{}".format(self.pool2._pool_type, self.pool2._pool_size, self.pool2._pool_stride))
print("fc-- weight_size:{}, bias_size_{}, activation:{}".format(self.fc.weight.shape, self.fc.bias.shape, self.fc._act))
# 打印每层的输出尺寸
print("\n########## print shape of features of every layer ###############")
print("inputs_shape: {}".format(inputs.shape))
print("outputs1_shape: {}".format(outputs1.shape))
print("outputs2_shape: {}".format(outputs2.shape))
print("outputs3_shape: {}".format(outputs3.shape))
print("outputs4_shape: {}".format(outputs4.shape))
print("outputs5_shape: {}".format(outputs5.shape))
# 选择是否打印训练过程中的参数和输出内容,可用于训练过程中的调试
if check_content:
# 打印卷积层的参数-卷积核权重,权重参数较多,此处只打印部分参数
print("\n########## print convolution layer's kern