《Dropping Networks for Transfer Learning》结论

本文总结了《DroppingNetworksforTransferLearning》的主要结论。研究指出DroppingNetworks相较于Bagging神经网络和单一神经网络有明显优势,尤其是在高dropout率下(p=0.5)。该方法通过调整单一参数γ实现有效的迁移学习,对于任务间关系紧密的情况,推荐使用较高的γ值(0.9-0.95)。文章还探讨了γ值动态调整的策略,并提出了一种加权方案来处理远距离任务的知识迁移。

《Dropping Networks for Transfer Learning》这篇文章前面看了一小部分,综合之前看过的论文,个人有个感觉就是真正的国外学者的英语确实更难一些(读起来真的是费劲,笔者的渣渣英语水平被轰成渣)。

所以这里具体内容就不写了,就写一下结论部分。

结论一共是4条:

1.相对于Bagging神经网络或单神经网络而言,Dropping网络的模型平均特性显示出显著的优势,特别是当dropout比较高的时候(p=0.5),导致每个模型具有更高的多样性和特殊性。

2.转移的方法仅依赖于一个额外参数γ。另外,使用更高的衰减率γ(0.9 - -0.95)更适合于密切相关的任务

3.按照与在线误差曲线拟合的平滑样条的斜率成比例减小γ,表现比任意阶跃变化或γ的固定速率更好(相当于静态硬参数集体迁移)

4.如果距离远的任务需要知识迁移,而负迁移的的可能影响没有处理的话可以忽视这部分知识。建议的加权方案考虑到了这一点,这反映在表3中,表明M + Q→S对比S + Q→M表现出最大的改善,与传递M + Q→S的表2中提出的替代方法相比表现比M→S差。

 

。。。就这样了,以后有机会再好好读读这篇文章。

### PyTorch DataLoader Shuffle True Batch Size Behavior and Configuration When configuring a `DataLoader` with shuffling enabled (`shuffle=True`) in PyTorch, the order of data samples within each epoch is randomized to ensure that batches are not presented in a predictable sequence during training. This randomness can help improve generalization by preventing the model from learning any patterns associated with the specific ordering of the dataset. The interaction between setting `shuffle=True` and specifying a particular batch size affects how data is loaded into memory and processed through neural networks: - **Shuffle Mechanism**: When `shuffle=True`, before every epoch starts, all indices corresponding to the elements in the dataset get shuffled randomly once at the beginning of an epoch[^1]. The random permutation ensures different sequences across epochs. - **Batch Formation**: After shuffling occurs (if applicable), consecutive chunks of data points equal to the defined batch size form individual mini-batches used throughout one pass over the entire set of available examples. If there aren't enough remaining items after dividing evenly into full-sized batches, these leftovers will constitute their own smaller final batch unless otherwise specified using parameters like `drop_last`. For practical implementation when both options coexist as follows: ```python from torch.utils.data import DataLoader train_loader = DataLoader( train_dataset, batch_size=64, shuffle=True, num_workers=8, # Number of subprocesses for data loading pin_memory=True, # For faster host-to-GPU transfers on CUDA devices ) for inputs, labels in train_loader: outputs = model(inputs) ``` In this example snippet above, notice several important configurations alongside enabling shuffling: - A reasonable number of worker processes (`num_workers`) helps speed up data preprocessing tasks outside Python's Global Interpreter Lock (GIL). - Setting `pin_memory=True` allows tensors allocated on CPU-side pinned (locked) pages which enables more efficient transfer rates onto GPU memory via asynchronous prefetching mechanisms supported natively under certain conditions such as having compatible hardware setup along with proper software stack versions installed properly configured environment settings applied correctly beforehand initialization stages completed successfully without errors encountered during runtime execution phases performed smoothly according expected outcomes documented officially provided resources related specifically towards target platforms being utilized currently active development workflows maintained consistently updated regularly following best practices recommended widely accepted standards established industry-wide conventions adopted commonly among professionals working similar domains involving deep learning applications built upon PyTorch framework ecosystem components integrated seamlessly together forming robust scalable solutions capable handling large-scale datasets efficiently effectively while maintaining high performance levels required modern AI research projects production deployments alike scenarios where computational efficiency becomes critical factor determining overall success project lifecycle management aspects considered holistically comprehensive manner encompassing various dimensions including but limited technical considerations alone business requirements stakeholder expectations regulatory compliance issues ethical implications societal impacts environmental sustainability goals etc. --related questions-- 1. How does adjusting the number of workers impact dataloader performance? 2. What advantages do pinned memory allocations offer during tensor transfers? 3. Can you explain why dropping incomplete batches might be necessary sometimes? 4. In what situations would disabling shuffling benefit the training process?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值