5.23 Matplotlib

本文通过几个Python代码示例展示了如何使用matplotlib进行图表绘制,包括曲线图、参数比较图及核密度估计图,并利用numpy和scipy库进行数据生成与分析。





import matplotlib.pyplot as plt
import numpy as np
import math

x = np.linspace(0,2,1000)
y = np.power(np.sin(x-2),2) * np.power(math.exp(1),-np.power(x,2))

plt.plot(x,y)
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.title("11.1 figure")
plt.show()

没什么好说的,用内置的指数函数,三角函数,然后生成一个x的序列再对应生成f(x),再plot和show出来就好了。


结果如下




import matplotlib.pyplot as plt
import numpy as np

X = np.random.normal(size= (20,10))
z = np.random.normal(size = (20,1))
b = np.random.normal(size = (10,1))
y = np.dot(X,b) + z

b1, _,__, ___ = np.linalg.lstsq(X, y)

plt.plot(np.array([i for i in range(10)]), b, 'xr' ,label='true parameters')
plt.plot(b1,'.b' ,label='estimated parameters')
plt.xlim((-1,10))
plt.ylim((-2,2))
plt.xlabel('index')
plt.ylabel('value')
plt.title('Parameter plot')
plt.legend()
plt.show()

题目的意思是自己给出一个X,b和z,然后y=Xb+z。

之后用y和X反过来估计b(和z)的值

这里我用了numpy.linalg中内置的lstsq函数,即最小二乘法,返回的第一个参数就是b。

之后在同一个图中画出各个点进行比较。

输出效果如图






import matplotlib.pyplot as plt
import numpy as np
import scipy.stats


z = np.random.normal(size = 10000)
kernel = scipy.stats.gaussian_kde(z)
data = np.linspace(-4,4,10000)

n, bins, patches = plt.hist(z, bins = 25, color= 'r', normed = True)
plt.plot(data, kernel.evaluate(data))
plt.show()

题目的意思是z是满足一个满足同一分布的10000个样本的向量,这个分布自选。然后生成一个这样的有25个柱子的柱形图,同时有一个使用高斯核密度估计法生成的密度估计。scipy.stats有内置的gaussian_kde函数,但是不知道怎么用。

最后试来试去,就生成了一个均匀分布的数据data,然后让这个核作用于data。然后画出来。跟要求的差不多,不过纵坐标有点看不懂。

效果图如图


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值