Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3, return true.
由于这道题里给出了限定条件,每一行的第一个元素一定比上一行最后一个元素大,所以整个二维数组可以被看成是一个被切分了几段的排序的一维数组。所以就可以用二分法搜索了。
class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int target) {
if (matrix.empty() || matrix[0].empty()) return false;
if (target < matrix[0][0] || target > matrix.back().back()) return false;
int m = matrix.size(), n = matrix[0].size();
int left = 0, right = m * n - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (matrix[mid / n][mid % n] == target) return true;
else if (matrix[mid / n][mid % n] < target) left = mid + 1;
else right = mid - 1;
}
return false;
}
};
本文介绍了一种高效的算法,用于在一个m x n的矩阵中搜索特定值。该矩阵具有每行从左到右递增排序的特性,且每行的第一个元素大于前一行的最后一个元素。通过利用这些特性,文章提出了一种基于二分搜索的方法。
588

被折叠的 条评论
为什么被折叠?



