AVL树

本文深入探讨了AVL树的定义、基本特征、高度计算、节点平衡因子、树旋转、插入与删除操作的详细流程。通过Fibonacci数列与AVL树高度的关系,阐述了AVL树的工作效率特性。同时,介绍了AVL树中平衡因子的更新与旋转操作的具体步骤,以及如何通过调整树结构来保持平衡。最后,总结了AVL树的查找操作与一般二叉树相似,但在插入和删除操作中额外关注平衡因子的更新与平衡性的恢复。

定义:一棵空二叉树是AVL树,如果T是非空二叉树,TL和TR分别是其左子树和右子树,

则当且仅当TL和TR都为AVL树且|HL-HR|<=1时,T是AVL树。

由定义知道一个AVL树的任何节点的左右子树的高度之差不超过1,这是AVL树最基本的特征。

AVL树的高度:(固定节点数计算最大高度)

记N_h为一棵高度为h的AVL树具有的最小节点数,则最坏情况是它的左右子树的高度不等,

一个是N_(h-1)和N_(h-2),从而得到

N_h=N_(h-1)+N_(h-2)+1            N_0=0,N_1=1

这类似于Fibonacci数列:F_n=F_(n-1)+F_(n-2),(F_0=0,F_1=1)

而F_h=(1+sqrt(5))^h/sqrt(5)

从而高度h和节点数是对数关系,因此 h=O(log(N_h))

由此容易知道在不考虑恢复AVL树的前提下,它的插入,删除和查找的工作量不超过O(n)。

AVL树节点的平衡因子

AVL树节点的平衡因子定义为其左子树的高度减去右子树的高度,我们可以在插入和删除操作的时候更新平衡因子。

一棵AVL树的各节点平衡因子为1,-1, 0

树的旋转

在介绍插入和删除操作之前首先介绍树的旋转操作

树的旋转操作是为了改变树的结构,使其达到平衡。旋转总共分为左旋和右旋两类

左旋

如图为树的以B为轴左旋示意图,从右到左是以A为轴右旋,树的旋转操作要特别注意儿子节点是否为空

顶层节点是否为根节点。

AVL树的插入操作

插入操作只会改变被插入节点到根节点路径上的节点的平衡因子。

因为在插入之前树是AVL树,因此各个节点的平衡因子是1,-1或0

一、如果路径上节点平衡因子是0,则插入后不会打破这个节点的平衡性。

二、如果路径上的节点的平衡因子是1或-1,则可能会打破平衡性,在这种情况下如果此节点的新的平衡

因子是0,则刚好将其补的更加平衡,平衡性未打破;否则平衡因子变成2或-2,则需要进行调整。

三、我们在对树进行调整后恢复子树相对于插入前的高度,不改变子子树的平衡因子。

由以上三点:只需向根部查找从插入点开始第一个平衡因子不为0的节点,令该节点为A

更新步骤:

(1). 若A不存在,说明插入节点不影响平衡性,则自下而上更新平衡因子直到根部即可。

(2). 若bf(A)=1且插入节点在A地右子树中,或者bf(A)=-1且插入节点在A的左子树中,则自下而上更新

平衡因子直到A。(注:A的平衡因子变为0)

(3). 若A的平衡性被打破,首先依然自下而上更新平衡因子,在按照下面进行分类:LL, LR, RR, RL

原bf(A)=1, 新的bf(A)=2, LL, LR,

原bf(A)=-1, 新的bf(A)=-2, RR, RL

如图为RR的情况,LL情况类似,旋转后只需再次改变两个节点的平衡因子

RR

如下图为RL的情况,LR类似,旋转后需要再次改变三个节点的平衡因子

RL

至此,插入操作已经完成,可见最多多做两次旋转操作调整树的结构使之平衡。

AVL树的删除操作:

删除操作和插入操作一样,也是先直接删除二叉树节点,然后在更新平衡因子,

调整AVL树使之平衡。

这里所指的删除的节点是实际被删除的节点,删除操作不影响其子树的平衡因子。

首先删除节点,然后沿着该节点的父节点向根部更新平衡因子,考虑更新后的节点A

新的平衡因子,分为下面三种情况:

(1)、如果bf(A)=0,则高度减少了1,从而继续向上找非平衡点。

(2)、如果bf(A)=1或者-1,则之前必为0,从而不影响平衡性,结束。

(3)、如果bf(A)=2(原来为1)或者-2(原来为-1),则A点非平衡。调整。

以bf(A)=-2为例,称A为L不平衡

如果A的右节点的平衡因子是0,则进行一次左旋转,如图:

L0

由于子树的高度和删除前一样,因此树已经平衡。

如果A的右节点的平衡因子是-1,则称为L-1不平衡,也要进行一次做旋转。

L-1

树的高度减少1,这使得上面的祖先节点可能不平衡,一次还要沿着路径在向上

寻找新的不平衡点,再次更新平衡因子,调整等。

如果A的右节点的平衡因子是1,则称为L1不平衡,要进行两次旋转。

L1

此时要根据BL的情况决定A和B的新的平衡因子。

由于树的高度减少了1,因此还要沿着路径继续向上寻找新的不平衡点。

至此树节点的删除操作完成。

总结

归纳起来,AVL树的查找操作等同于一般二叉树,插入和删除操作除了一般的二叉树插入和删除

还要更新树的平衡因子,当平衡因子被打破时要通过旋转恢复。而且在调整平衡时尽量影响局部范围。

AVL是一种自平衡的二叉查找,它确保了高度始终保持在对数级别,从而保证了查找、插入和删除操作的时间复杂度为O(log n)。这种数据结构以它的发明者G.M. Adelson-Velsky和E.M. Landis的名字命名[^1]。 ### AVL的定义 - **平衡因子**:每个节点都有一个平衡因子,它是该节点左子高度减去右子高度。对于AVL来说,所有节点的平衡因子只能是-1, 0或1。 - **空**:如果T是空,则它自然是一个AVL。 - **非空**:若T不是空,则其左右子TL和TR都必须是AVL,并且对于任意节点,|HL - HR| ≤ 1(其中HL和HR分别表示左子和右子高度)。 ### AVL的操作 当进行插入或删除操作时,可能会破坏AVL的平衡性,这时需要通过旋转来重新恢复平衡: - **单旋转**: - 左单旋(Single Rotate with Left)用于处理左孩子的左子过高。 - 右单旋(Single Rotate with Right)用于处理右孩子的右子过高。 - **双旋转**: - 左右双旋(Double Rotate with Left)用于处理左孩子的右子过高的情况。 - 右左双旋(Double Rotate with Right)用于处理右孩子的左子过高的情况。 这些旋转操作可以保持AVL的性质不变,并且能够快速地调整的结构以维持平衡。 ### AVL的实现 下面是一个简单的C语言代码示例,展示了如何定义AVL的节点以及实现基本的插入操作。这个例子中包含了必要的函数声明和一些核心逻辑。 ```c #include <stdio.h> #include <stdlib.h> // 定义AVL节点结构体 typedef struct AvlNode { int element; struct AvlNode *left; struct AvlNode *right; int height; // 节点的高度 } *AvlTree, *Position; // 获取两个整数中的较大者 int max(int a, int b) { return (a > b) ? a : b; } // 计给定节点的高度 static int Height(AvlTree T) { if (T == NULL) return -1; // 空节点高度为-1 else return T->height; } // 单旋转 - 左左情况 AvlTree singlerotatewithLeft(AvlTree K2) { Position K1 = K2->left; K2->left = K1->right; K1->right = K2; // 更新节点高度 K2->height = max(Height(K2->left), Height(K2->right)) + 1; K1->height = max(Height(K1->left), K2->height) + 1; return K1; // 新根 } // 单旋转 - 右右情况 AvlTree singlerotatewithRight(AvlTree K2) { Position K1 = K2->right; K2->right = K1->left; K1->left = K2; // 更新节点高度 K2->height = max(Height(K2->left), Height(K2->right)) + 1; K1->height = max(Height(K1->right), K2->height) + 1; return K1; // 新根 } // 双旋转 - 左右情况 AvlTree doublerotatewithLeft(AvlTree K3) { K3->left = singlerotatewithRight(K3->left); return singlerotatewithLeft(K3); } // 双旋转 - 右左情况 AvlTree doublerotatewithRight(AvlTree K3) { K3->right = singlerotatewithLeft(K3->right); return singlerotatewithRight(K3); } // 插入新元素到AVLAvlTree Insert(int x, AvlTree T) { if (T == NULL) { // 如果为空,创建新节点 T = (AvlTree)malloc(sizeof(struct AvlNode)); if (T == NULL) printf("Out of space!!!"); else { T->element = x; T->left = T->right = NULL; T->height = 0; // 新叶节点高度为0 } } else if (x < T->element) { // 向左子插入 T->left = Insert(x, T->left); // 检查并修复平衡 if (Height(T->left) - Height(T->right) == 2) { if (x < T->left->element) T = singlerotatewithLeft(T); // 左左旋转 else T = doublerotatewithLeft(T); // 左右旋转 } } else if (x > T->element) { // 向右子插入 T->right = Insert(x, T->right); // 检查并修复平衡 if (Height(T->right) - Height(T->left) == 2) { if (x > T->right->element) T = singlerotatewithRight(T); // 右右旋转 else T = doublerotatewithRight(T); // 右左旋转 } } // 更新高度 T->height = max(Height(T->left), Height(T->right)) + 1; return T; } ``` 上述代码提供了AVL的基本框架,包括节点定义、插入操作及必要的旋转方法。实际应用中可能还需要添加更多的功能,如删除节点、查找特定值等。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值