强化学习(三)用动态规划(DP)求解

微信公众号:李歪理,欢迎大家关注

上一章我们讨论了用马尔科夫假设来简化强化学习模型的复杂度,这一篇我们在马尔科夫假设和贝尔曼方程的基础上讨论使用动态规划(Dynamic Programming, DP)来求解强化学习的问题。

1. 动态规划和强化学习问题的联系

动态规划的关键点有两个:

  • 一是问题的最优解可以由若干小问题的最优解构成,即通过寻找子问题的最优解来得到问题的最优解;
  • 二是可以找到子问题状态之间的递推关系,通过较小的子问题状态递推出较大的子问题的状态。而强化学习的问题恰好是满足这两个条件的。

我们先看看强化学习的两个基本问题,具体的数学描述是这样:

预测问题:给定一个MDP(马尔科夫决策过程) ⟨S,A,P,R,γ⟩\left\langle S,A,P,R,\gamma\right \rangle

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值