分布式训练之显存问题

1. 大模型大概有多大,模型文件有多大?

大模型也分为不同的规格,一般模型的规格会体现在模型的名称上,例如 LLaMA2-13b,13b 就是其模型参数量的大小,意思是 130亿的参数量。大模型的文件大小与其参数量有关,通常大模型是以半精度存储的, Xb 的模型文件大概是 2X GB多一些,例如 13b 的模型文件大小大约是 27GB 左右。

2. 能否用4 * v100 32G训练vicuna 65b?

一般来说推理模型需要的显存约等于模型文件大小,全参训练需要的显存约为推理所需显存的三倍到四倍,正常来说,在不量化的情况下4张 v100 显卡推理 65b 的模型都会有一些吃力,无法进行训练,需要通过 LoRA 或者QLoRA 采用低秩分解的方式才可以训练。

3.如何评估你的显卡利用率?

  1. flops比值法:gpu利用率 = 实测的flops/显卡理论上的峰值flops。deepspeed实测flops 100t flops,而用的是A100卡理论峰值312t flops,可以得到GPU利用率只有 32.05%。
  2. throughout估计法:吞吐量 = example数量/秒/GPU * max_length;gpu利用率 = 实际吞吐量 / 论文中的吞吐量(假设利用率100%),实测训练时处理样本速度为 3 example/s,一共有4卡,max length 2048,则吞吐量为 1536 token/s/gpu,根据llama论文可以得知,他们训练7B模型的吞吐量约为 3300 token/s/gpu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值