BERT详解

1.背景结构

1.1 基础知识

BERT(Bidirectional Encoder Representations from Transformers)是谷歌提出,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是前几年来自残差网络最优突破性的一项技术了。论文的主要特点以下几点:

  1. 使用了双向Transformer作为算法的主要框架,之前的模型是从左向右输入一个文本序列,或者将 left-to-right 和
    right-to-left 的训练结合起来,实验的结果表明,双向训练的语言模型对语境的理解会比单向的语言模型更深刻;
  2. 使用了Mask Language Model(MLM) 和 Next Sentence Prediction(NSP) 的多任务训练目标;
  3. 使用更强大的机器训练更大规模的数据,使BERT的结果达到了全新的高度,并且Google开源了BERT模型,用户可以直接使用BERT作为Word2Vec的转换矩阵并高效地将其应用到自己的任务中。

BERT 只利用了 Transformer 的 encoder 部分。因为 BERT 的目标是生成语言模型,所以只需要 encoder 机制。

1.2 BERT与其他模型相比

  • RNN/LSTM:可以做到并发执行,同时提取词在句子中的关系特征,并且能在多个不同层次提取关系特征,进而
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值