论文阅读:One Embedder, Any Task: Instruction-Finetuned Text Embeddings

本文介绍了INSTRUCTOR模型,它通过指令微调提高文本嵌入在不同任务和领域的表现,避免特定领域数据的再调整。INSTRUCTOR基于GTR模型,使用MEDI数据集进行多任务训练,提升模型的鲁棒性和泛化性能,并在70项任务上取得平均3.4%的提升。

1. 优势

现存的emmbedding应用在新的task或者domain上时表现会有明显下降,甚至在相同task的不同domian上的效果也不行。这篇文章的重点就是提升embedding在不同任务和领域上的效果,特点是不需要用特定领域的数据进行finetune而是使用instuction finetuning就可以在不同的任务和领域上表现得很好。新提出的模型被叫做INSTRUCTOR,进行instruction finetuning所用的数据集是MEDI

Paper,Code,Leaderboard,Checkpoint,Twitter,Data

2. INSTRUCTOR结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值