JVM虚拟机选项:Xms Xmx PermSize MaxPermSize区别

本文探讨了Java中自动回收内存的重要性,强调了在应用程序尤其是服务器程序中根据业务情况指明内存分配限制的必要性。详细解释了-Xms、-Xmx、PermSize和MaxPermSize参数的作用,以及它们如何影响应用程序性能,避免Java.lang.OutOfMemory错误。

java虽然是自动回收内存,但是应用程序,尤其服务器程序最好根据业务情况指明内存分配限制。否则可能导致应用程序宕掉。

举例说明含义:
-Xms128m
表示JVM Heap(堆内存)最小尺寸128MB,初始分配
-Xmx512m
表示JVM Heap(堆内存)最大允许的尺寸256MB,按需分配。

说明:如果-Xmx不指定或者指定偏小,应用可能会导致java.lang.OutOfMemory错误,此错误来自JVM不是Throwable的,无法用try...catch捕捉。

 

PermSize 和MaxPermSize指明虚拟机为java永久生成对象(Permanate generation)如,class对象、方法对象这些可反射(reflective)对象分配内存限制,这些内存不包括在Heap(堆内存)区之中。

-XX:PermSize =64MB 最小尺寸,初始分配
-XX:MaxPermSize=256MB 最大允许分配尺寸,按需分配
过小会导致:java.lang.OutOfMemoryError: PermGen space

MaxPermSize缺省值和-server -client选项相关。
-server选项下默认MaxPermSize为64m
-client选项下默认MaxPermSize为32m

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值