the complexity of solving a l0-norm optimization problem

the solution for a sparse recovery problem is given by:

min||x||0min||x||0
s.ty=Axs.ty=Ax

The definition of ||x||0||x||0 is no. of non-zero entries in xx. This is also called the sparsity of the vector.

i.e., we are asking for the sparsest solution xx, that satisfies y=Axy=Ax.

Consider the simplest case where xx is 1-sparse but you don't know the location of that non-zero entry. In such a case, we have (N1)(N1) possibilities for a 1-sparse vector and to find the solution we have to examine the values of all the (N1)(N1) possibilities for finding the unique minimizer. Similarly, if you are told that xx is kk-sparse, you need to search (Nk)(Nk) possibilities. i.e., the algorithm grows as (Nk)(Nk) with increase in kk. Since kk is not known a priori, you have to check for all the NN possible values of kk.

Hence, the complexity of the algorithm is i=1N(Ni)∑i=1N(Ni). This is called as NP hard problem which is an acronym for Non-polynomial time complexity.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值