算法思想
如果你想把多个样本自动学习后分成k类,就可以使用k-means算法。首先随机取里面的k个点作为初始中心点,每个点离哪个中心点距离最近就属于哪一个分类,然后再根据同一类的点求均值得出新的中心点。以上步骤不断迭代到中心点的位置不变或者次数达到某个阈值,算法停止。
代码
import numpy as np
#x是数据集,k是种类,maxIt最多循环次数
def kmeans(X, k, maxIt):
numPoints, numDim = X.shape
dataSet = np.zeros((numPoints, numDim + 1))
dataSet[:, :-1] = X
# Initialize centroids randomly
#centroids = dataSet[np.random.randint(numPoints, size = k), :]#size是随机数的个数,
centroids = dataSet[0:k, :]
#print("dataset:"+str(dataSet))
#print("centroids:"+str(centroids))
#Randomly assign labels to initial centorid
centroids[:, -1] = range(1, k +1)
# Initialize book keeping vars.
iterations = 0
oldCentroids = None
# Run the main k-means algorithm
while not shouldStop(oldCentroids, centroids, iterations, maxIt):
#print ("iteration: \n", iterations)
#print ("dataSet: \n", dataSet)
#print ("centroids: \n", centroids)
# Save old centroids for convergence test. Book keeping.
oldCentroids = np.copy(centroids)#复制一个数组
iterations += 1
# Assign labels to each datapoint based on centroids
updateLabels(dataSet, centroids)#更新标签
# Assign centroids based on datapoint labels
centroids = getCentroids(dataSet, k)
# We can get the labels too by calling getLabels(dataSet, centroids)
return dataSet
# Function: Should Stop
# -------------
# Returns True or False if k-means is done. K-means terminates either
# because it has run a maximum number of iterations OR the centroids
# stop changing.
def shouldStop(oldCentroids, centroids, iterations, maxIt):#是否停止
if iterations > maxIt:
return True
return np.array_equal(oldCentroids, centroids)
# Function: Get Labels
# -------------
# Update a label for each piece of data in the dataset.
def updateLabels(dataSet, centroids):#更新标签
# For each element in the dataset, chose the closest centroid.
# Make that centroid the element's label.
numPoints, numDim = dataSet.shape
for i in range(0, numPoints):
dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids)
def getLabelFromClosestCentroid(dataSetRow, centroids):#根据距离最近的那个中心点作为种类
label = centroids[0, -1];
minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])
for i in range(1 , centroids.shape[0]):
dist = np.linalg.norm(dataSetRow - centroids[i, :-1])
if dist < minDist:
minDist = dist
label = centroids[i, -1]
#print ("minDist:", minDist)
return label
# Function: Get Centroids
# -------------
# Returns k random centroids, each of dimension n.
def getCentroids(dataSet, k):
# Each centroid is the geometric mean of the points that
# have that centroid's label. Important: If a centroid is empty (no points have
# that centroid's label) you should randomly re-initialize it.
result = np.zeros((k, dataSet.shape[1]))
for i in range(1, k + 1):
oneCluster = dataSet[dataSet[:, -1] == i, :-1]
result[i - 1, :-1] = np.mean(oneCluster, axis = 0)#每一列求均值
result[i - 1, -1] = i#上标签
return result
x1 = np.array([1, 1])
x2 = np.array([2, 1])
x3 = np.array([4, 3])
x4 = np.array([5, 4])
testX = np.vstack((x1, x2, x3, x4))#合并成一个数组
result = kmeans(testX, 2 ,10)
print ("final result:")
print (result)