import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
sns.set_context("talk")
anascombe = pd.read_csv('anscombe.csv')
anascombe.head()
print(anascombe.groupby('dataset')['x'].mean())
print(anascombe.groupby('dataset')['x'].var())
print(anascombe.groupby('dataset')['y'].mean())
print(anascombe.groupby('dataset')['y'].var())
print(anascombe.groupby('dataset').corr())
x = sm.add_constant(x)
L = sm.OLS(x,y)
print(L.fit().summary())
g = sns.FacetGrid(anascombe, col='dataset', size=5)
g = g.map(plt.scatter, "x", "y")
plt.show()W14 作业
最新推荐文章于 2022-04-09 20:36:43 发布
本博客通过使用Python的多个库,如Pandas、Seaborn、Matplotlib等,对Anscombe四组数据集进行了详细的统计分析,并对各组数据的X和Y变量的均值、方差及相关系数进行了比较,最后还展示了每组数据的散点图。
985

被折叠的 条评论
为什么被折叠?



