考虑有效解的数量/总数,因为要求从小往大结尾是相等才对,所以考虑从小往大枚举
i
i
i,对每一个
i
i
i,我们考虑结尾是
i
,
i
i,i
i,i的解的个数,因为我们用的是古典概型的枚举法,所以解的形状是
…
…
i
,
i
…
…
……i,i……
……i,i……,前缀
…
…
i
,
i
……i,i
……i,i是合法解,那么怎么算这样的序列个数呢,首先前面是不相等且递增且每个数都小于
i
i
i的序列,后面在确定前面用去多少数之后,直接乱排就行,我们可以枚举
i
,
i
i,i
i,i前面序列的个数
j
j
j
j
∈
[
1
,
c
n
t
2
]
j\in[1,cnt2]
j∈[1,cnt2]
c
n
t
1
[
j
]
cnt1[j]
cnt1[j]是对应
i
,
i
i,i
i,i前使用
j
j
j个数的个数,
c
i
ci
ci表示当前枚举的数字
i
i
i的数量
a
n
s
+
=
c
n
t
1
[
j
]
∗
c
i
∗
(
c
i
−
1
)
∗
A
(
n
−
j
−
2
,
n
−
j
−
2
)
ans+=cnt1[j]*ci*(ci - 1)*A(n-j-2,n-j-2)
ans+=cnt1[j]∗ci∗(ci−1)∗A(n−j−2,n−j−2)
那么怎么计算
c
n
t
1
[
j
]
cnt1[j]
cnt1[j]呢,假如我们已经计算好了第
i
−
1
i-1
i−1次枚举后的
c
n
t
1
cnt1
cnt1数组,我们先用这个数组,计算好当前枚举的数字
i
i
i可以产生的答案,再用当前枚举的
i
i
i来更新这个
c
n
t
1
cnt1
cnt1数组,可以得到转移方程
c
n
t
1
[
i
]
+
=
c
n
t
1
[
i
−
1
]
∗
c
i
cnt1 [ i ] += cnt1 [ i - 1 ] * ci
cnt1[i]+=cnt1[i−1]∗ci
(总数处理直接
A
(
n
,
n
)
A(n,n)
A(n,n)上个逆元就是了不会有人不会算逆元吧,逃)
这里使用了 jiangly sama 的模与逆元模版
ac 代码
# include <bits/stdc++.h>
using namespace std ;
namespace predefine {
using ll = long long ;
# define IOS iostream::sync_with_stdio ( 0 ) ; cin.tie ( 0 ) ;
# define af( i , a , b ) for ( ll i = a ; i <= b ; ++ i )
# define df( i , a , b ) for ( ll i = a ; i >= b ; -- i )
}
using namespace predefine ;
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
}
template<i64 P>
struct MLong {
i64 x;
constexpr MLong() : x{} {}
constexpr MLong(i64 x) : x{norm(x % getMod())} {}
static i64 Mod;
constexpr static i64 getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(i64 Mod_) {
Mod = Mod_;
}
constexpr i64 norm(i64 x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr i64 val() const {
return x;
}
explicit constexpr operator i64() const {
return x;
}
constexpr MLong operator-() const {
MLong res;
res.x = norm(getMod() - x);
return res;
}
constexpr MLong inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MLong &operator*=(MLong rhs) & {
x = mul(x, rhs.x, getMod());
return *this;
}
constexpr MLong &operator+=(MLong rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MLong &operator-=(MLong rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MLong &operator/=(MLong rhs) & {
return *this *= rhs.inv();
}
friend constexpr MLong operator*(MLong lhs, MLong rhs) {
MLong res = lhs;
res *= rhs;
return res;
}
friend constexpr MLong operator+(MLong lhs, MLong rhs) {
MLong res = lhs;
res += rhs;
return res;
}
friend constexpr MLong operator-(MLong lhs, MLong rhs) {
MLong res = lhs;
res -= rhs;
return res;
}
friend constexpr MLong operator/(MLong lhs, MLong rhs) {
MLong res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
i64 v;
is >> v;
a = MLong(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
return os << a.val();
}
friend constexpr bool operator==(MLong lhs, MLong rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MLong lhs, MLong rhs) {
return lhs.val() != rhs.val();
}
};
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 998244353;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 998244353;
using Z = MInt<P>;
struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;
Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}
void init(int m) {
m = std::min(m, Z::getMod() - 1);
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);
for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}
Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
} comb;
void solve ()
{
ll n ; cin >> n ;
vector < ll > v ( n ) ;
af ( i , 0 , n - 1 ) cin >> v [ i ] ;
map < ll , ll > mp ;
af ( i , 0 , n - 1 ) ++ mp [ v [ i ] ] ;
comb.init ( n ) ;
vector < Z > cnt1 ( n + 1 ) ;
cnt1 [ 0 ] = 1 ;
Z ans = 0 ;
ll cnt2 = 0 ;
for ( auto [ u , ci ] : mp ) {
af ( i , 0 , cnt2 ) {
ans += (Z) ci * ( ci - 1 ) * cnt1 [ i ] * comb.fac ( n - i - 2 ) ;
}
++ cnt2 ;
df ( i , cnt2 , 1 ) {
cnt1 [ i ] += cnt1 [ i - 1 ] * ci ;
}
}
cout << ans * comb._invfac [ n ] << endl ;
}
int main () {
ll _ = 1 ;
while ( _ -- ) {
solve () ;
}
return 0 ;
}