对于数组arr,做如下操作
1.对L到R区间的数都加V
add(L, R, V, arr)
2.对L到R区间的数都修改为V
update(L, R, V, arr)
3.查询L到R区间的数字的和
add(L, R, arr)
方法一:暴力破解
public class BruteForce {
public int[] arr;
public BruteForce(int[] origin) {
arr = new int[origin.length + 1];
for (int i = 0; i < origin.length; i++) {
arr[i + 1] = origin[i];
}
}
public void update(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] = C;
}
}
public void add(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] += C;
}
}
public long query(int L, int R) {
long ans = 0;
for (int i = L; i <= R; i++) {
ans += arr[i];
}
return ans;
}
}
可以看出,复杂度都是O(N)的
方法二:线段树
复杂度log(N)
线段树采用数组存储,下标为0的地方,不存储数据,从下标为1的地方存储
因此对于i,左节点为2*i,右节点为2*i + 1
和数组的大小为原数组的4倍
public class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int maxLen;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
maxLen = origin.length + 1;
arr = new int[maxLen + 1];
for (int i = 1; i < maxLen; i++) {
arr[i] = origin[i - 1];
}
sum = new int[maxLen << 2];
lazy = new int[maxLen << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[maxLen << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[maxLen << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushUp(rt);
}
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// L..R -> 任务范围 ,所有的值累加上C
// l,r -> 表达的范围
// rt 去哪找l,r范围上的信息
public void add(int L, int R, int C, int l, int r, int rt) {
if (L <= l && R >= r) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 任务并没有把l...r全包住
// 要把当前任务往下发
// 任务 L, R 没有把本身表达范围 l,r 彻底包住
int mid = (l + r) >> 1; // l..mid (rt << 1) mid+1...r(rt << 1 | 1)
// 下发之前所有攒的懒任务
pushDown(rt, mid - l + 1, r - mid);
// 左孩子是否需要接到任务
if (L <= mid) {
add(L, R, C, l, mid, rt << 1);
}
// 右孩子是否需要接到任务
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
// 左右孩子做完任务后,我更新我的sum信息
pushUp(rt);
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
}
验证:
package com.zh.class32;
import com.zh.class32.segmenttree.SegmentTree;
public class Test {
public static int[] genarateRandomArray(int len, int max) {
int size = (int) (Math.random() * len) + 1;
int[] origin = new int[size];
for (int i = 0; i < size; i++) {
origin[i] = (int) (Math.random() * max) - (int) (Math.random() * max);
}
return origin;
}
public static boolean test() {
int len = 100;
int max = 1000;
int testTimes = 5000;
int addOrUpdateTimes = 1000;
int queryTimes = 500;
for (int i = 0; i < testTimes; i++) {
int[] origin = genarateRandomArray(len, max);
SegmentTree seg = new SegmentTree(origin);
int S = 1;
int N = origin.length;
int root = 1;
seg.build(S, N, root);
BruteForce rig = new BruteForce(origin);
for (int j = 0; j < addOrUpdateTimes; j++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
int C = (int) (Math.random() * max) - (int) (Math.random() * max);
if (Math.random() < 0.5) {
seg.add(L, R, C, S, N, root);
rig.add(L, R, C);
} else {
seg.update(L, R, C, S, N, root);
rig.update(L, R, C);
}
}
for (int k = 0; k < queryTimes; k++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
long ans1 = seg.query(L, R, S, N, root);
long ans2 = rig.query(L, R);
if (ans1 != ans2) {
return false;
}
}
}
return true;
}
public static void main(String[] args) {
int[] origin = { 2, 1, 1, 2, 3, 4, 5 };
SegmentTree seg = new SegmentTree(origin);
int S = 1; // 整个区间的开始位置,规定从1开始,不从0开始 -> 固定
int N = origin.length; // 整个区间的结束位置,规定能到N,不是N-1 -> 固定
int root = 1; // 整棵树的头节点位置,规定是1,不是0 -> 固定
int L = 2; // 操作区间的开始位置 -> 可变
int R = 5; // 操作区间的结束位置 -> 可变
int C = 4; // 要加的数字或者要更新的数字 -> 可变
// 区间生成,必须在[S,N]整个范围上build
seg.build(S, N, root);
// 区间修改,可以改变L、R和C的值,其他值不可改变
seg.add(L, R, C, S, N, root);
// 区间更新,可以改变L、R和C的值,其他值不可改变
seg.update(L, R, C, S, N, root);
// 区间查询,可以改变L和R的值,其他值不可改变
long sum = seg.query(L, R, S, N, root);
System.out.println(sum);
System.out.println("对数器测试开始...");
System.out.println("测试结果 : " + (test() ? "通过" : "未通过"));
}
}
相关题目
在无限长的数轴(即 x 轴)上,我们根据给定的顺序放置对应的正方形方块。
第 i 个掉落的方块(positions[i] = (left, side_length))是正方形,其中 left 表示该方块最左边的点位置(positions[i][0]),side_length 表示该方块的边长(positions[i][1])。
每个方块的底部边缘平行于数轴(即 x 轴),并且从一个比目前所有的落地方块更高的高度掉落而下。在上一个方块结束掉落,并保持静止后,才开始掉落新方块。
方块的底边具有非常大的粘性,并将保持固定在它们所接触的任何长度表面上(无论是数轴还是其他方块)。邻接掉落的边不会过早地粘合在一起,因为只有底边才具有粘性。
返回一个堆叠高度列表 ans 。每一个堆叠高度 ans[i] 表示在通过 positions[0], positions[1], ..., positions[i] 表示的方块掉落结束后,目前所有已经落稳的方块堆叠的最高高度。
示例 1:
输入: [[1, 2], [2, 3], [6, 1]]
输出: [2, 5, 5]
解释:第一个方块 positions[0] = [1, 2] 掉落:
_aa
_aa
-------
方块最大高度为 2 。第二个方块 positions[1] = [2, 3] 掉落:
__aaa
__aaa
__aaa
_aa__
_aa__
--------------
方块最大高度为5。
大的方块保持在较小的方块的顶部,不论它的重心在哪里,因为方块的底部边缘有非常大的粘性。第三个方块 positions[1] = [6, 1] 掉落:
__aaa
__aaa
__aaa
_aa
_aa___a
--------------
方块最大高度为5。因此,我们返回结果[2, 5, 5]。
示例 2:
输入: [[100, 100], [200, 100]]
输出: [100, 100]
解释: 相邻的方块不会过早地卡住,只有它们的底部边缘才能粘在表面上。
注意:
- 1 <= positions.length <= 1000.
- 1 <= positions[i][0] <= 10^8.
- 1 <= positions[i][1] <= 10^6.
package com.zh.class32;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.TreeSet;
public class FallingSquares {
public static class SegmentTree {
private int[] max;
private int[] change;
private boolean[] update;
public SegmentTree(int size) {
int N = size + 1;
max = new int[N << 2];
change = new int[N << 2];
update = new boolean[N << 2];
}
private void pushUp(int rt) {
max[rt] = Math.max(max[rt << 1], max[rt << 1 | 1]);
}
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
max[rt << 1] = change[rt];
max[rt << 1 | 1] = change[rt];
update[rt] = false;
}
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
max[rt] = C;
return;
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
public int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return max[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
int left = 0;
int right = 0;
if (L <= mid) {
left = query(L, R, l, mid, rt << 1);
}
if (R > mid) {
right = query(L, R, mid + 1, r, rt << 1 | 1);
}
return Math.max(left, right);
}
}
public HashMap<Integer, Integer> index(int[][] positions) {
TreeSet<Integer> pos = new TreeSet<>();
for (int[] arr : positions) {
pos.add(arr[0]);
pos.add(arr[0] + arr[1] - 1);
}
HashMap<Integer, Integer> map = new HashMap<>();
int count = 0;
for (Integer index : pos) {
map.put(index, ++count);
}
return map;
}
public List<Integer> fallingSquares(int[][] positions) {
HashMap<Integer, Integer> map = index(positions);
int N = map.size();
SegmentTree segmentTree = new SegmentTree(N);
int max = 0;
List<Integer> res = new ArrayList<>();
// 每落一个正方形,收集一下,所有东西组成的图像,最高高度是什么
for (int[] arr : positions) {
int L = map.get(arr[0]);
int R = map.get(arr[0] + arr[1] - 1);
int height = segmentTree.query(L, R, 1, N, 1) + arr[1];
max = Math.max(max, height);
res.add(max);
segmentTree.update(L, R, height, 1, N, 1);
}
return res;
}
}