Some design tradeoffs

1,为什么STL stack的pop操作返回值类型是void,而不直接返回栈顶元素,用一个pop同时搞定top和pop两个函数的工作岂不是更加优雅高效?

SGI的解释:

One might wonder why pop() returns void, instead of value_type. That is, why must one usetop() andpop() to examine and remove the top element, instead of combining the two in a single member function? In fact, there is a good reason for this design. Ifpop() returned the top element, it would have to return by value rather than by reference: return by reference would create a dangling pointer. Return by value, however, is inefficient: it involves at least one redundant copy constructor call. Since it is impossible forpop() to return a value in such a way as to be both efficient and correct, it is more sensible for it to return no value at all and to require clients to usetop() to inspect the value at the top of the stack.

简言之,当pop返回时,根据语义,栈顶元素已经出栈了,此时不能再返回一个引用,而必须将栈顶元素以传值的方式返回,需要至少构造一个临时对象,影响效率。虽然有NRV优化的存在,但是一方面不能完全依赖编译器,另一方面NRV优化在Stan Lippman看来必须要有Copy constructor存在。

另一个观点是,如果stack中存放的是复杂的类型,在copy constructor的过程中发生异常,则临时对象就会丢失,这牵涉到thread safety的一些讨论,关于此问题的一些相关信息:

http://www.sgi.com/tech/stl/stack.html

http://www.gotw.ca/gotw/008.htm

http://stackoverflow.com/questions/4892108/c-stl-stack-question-why-does-pop-not-throw-an-exception-if-the-stack-is-em

 

2,关于itoa函数的设计问题。首先给出itoa的原型:
char *_itoa(
    int value,
    char *str,
int radix
);
为什么要在两个地方返回结果?其实最后一个参数str既是传入参数也是传出参数,它指向的是调用者预分配好的空间,itoa假定这个空间足够大(这也就是为啥这个函数不安全的原因,假如str指向的空间不够大,就溢出了,所以_itoa_s需要强制指定str指向的空间大小,并在函数内部检查确保不溢出)。
之所以将结果字符串同时也通过返回值返回,我猜测是便于方便这样调用:strlen(_itoa(100, str, 10)),可以直接将函数的返回值用作其他字符串函数的参数。

The packet reaches the Header Alteration (HA) unit. The HA: • Extracts some key fields from the PTP header. • Adds or removes a Timestamp Tag. For further details, refer to Section 49.4.9.4, PTP Action Trigger. 4. PSU (Packet Stamping Unit): The packet reaches the PSU. The PSU: • Determines the action that must be performed on the packet. For further details, refer to Section 49.4.9.5, PTP Action Assignment. • Retrieves the current TOD from TAI0 or TAI1. • Updates the ingress timestamp in the packet header and in the Timestamp Tag (if one exists). • Stores the ingress timestamp in a timestamp queue if needed (for two-step timestamping). For further details, refer to Section 49.4.11, Timestamp Queues. • Stores the egress timestamp metadata in a timestamp queue if needed (for two-step timestamping or for one step DelayReq). The actual timestamp value is stored in a separate egress queue in the TSU (below). For further details, refer to Section 49.4.11, Timestamp Queues. • Alters the packet to maintain correct UDP checksum value. For further details, refer to Section 49.4.5, UDP Checksum Update. 5. TSU (Time Stamping Unit): • Updates the egress timestamp and correctionField in the packet header. • Alters the packet to maintain correct UDP checksum value. For further details, refer to Section 49.4.5, UDP Checksum Update. • Stores the egress timestamp in a timestamp queue if needed. For further details, refer to Section 49.4.11, Timestamp Queues. • Dispatches the packet to the Tx MAC. 翻译并解释
09-17
<think> Hmm, the user is asking for a translation and explanation of a technical networking text about PTP (Precision Time Protocol) packet processing units. Looking at the history, this is part of an ongoing series where the user consistently requests Chinese translations with detailed explanations followed by specific question generation rules. The current text describes three specialized hardware units involved in PTP packet modification: Header Alteration (HA), Packet Stamping Unit (PSU), and Time Stamping Unit (TSU). The complexity lies in explaining their sequential interactions while maintaining technical accuracy. Noticing the user's pattern - they're likely a network engineer or student studying IEEE 1588 implementations. Previous responses about packet descriptor processing and timestamping engines suggest they're exploring time-sensitive networking. The strict formatting requirements indicate this might be for documentation or exam preparation. Key challenges in this response: 1. The translation must preserve technical terms like "Timestamp Tag" and "TAI" (International Atomic Time references) 2. Need to visualize how packets flow through HA→PSU→TSU 3. Must clarify two-step vs one-step timestamping differences 4. UDP checksum recalculation is a subtle but critical detail The explanation should emphasize real-world implications: how these units achieve nanosecond accuracy, why checksum updates are necessary after timestamp insertion, and when timestamp queues are utilized. Industrial automation or telecom use cases would make good examples. For the mandatory questions at the end, they should probe system limitations (like queue overflow risks), design tradeoffs (hardware vs software timestamping), and failure scenarios - since the user's history shows interest in troubleshooting aspects. </think> ### 翻译: 数据包到达头部修改单元(HA)。HA的功能: • 从PTP头部提取关键字段 • 添加或删除时间戳标签 (详见第49.4.9.4节《PTP动作触发》) 4. **数据包标记单元(PSU)**: 数据包到达PSU后,PSU执行: • 确定需对数据包执行的动作 (详见第49.4.9.5节《PTP动作分配》) • 从TAI0或TAI1获取当前日时间(TOD) • 更新包头和(若存在)时间戳标签中的入口时间戳 • 按需将入口时间戳存入时间戳队列(用于两步时间戳) (详见第49.4.11节《时间戳队列》) • 按需将出口时间戳元数据存入时间戳队列(用于两步时间戳或单步DelayReq)。实际时间戳值存储在TSU的独立出口队列中 (详见第49.4.11节《时间戳队列》) • 修改数据包以维持正确UDP校验和 (详见第49.4.5节《UDP校验和更新》) 5. **时间戳单元(TSU)**: • 更新包头中的出口时间戳和修正字段 • 修改数据包以维持正确UDP校验和 (详见第49.4.5节《UDP校验和更新》) • 按需将出口时间戳存入时间戳队列 (详见第49.4.11节《时间戳队列》) • 将数据包分发至发送端MAC --- ### 解释: ```mermaid graph LR A[HA] -->|提取字段/修改标签| B[PSU] B -->|时间戳操作| C[TSU] C -->|分发| D[Tx MAC] ``` #### 核心单元功能详解: 1. **头部修改单元(HA)** - **字段提取**:从PTP包头抓取关键信息(如消息类型、序列号) - **标签管理**:添加/删除时间戳标签(支持透明时钟模式) - *示例*:移除旧标签以插入新硬件时间戳 2. **数据包标记单元(PSU)** - **动态决策**:根据PTP动作表选择处理方式(如丢弃或转发) - **时间戳处理**: - 基于原子时钟源(TAI0/TAI1)获取TOD - 更新入口时间戳(记录包进入设备的时间) - **两步时间戳机制**: - 临时存储入口时间戳至队列 - 延迟插入出口时间戳(避免处理延迟影响精度) - **校验和维护**:修改包内容后重算UDP校验和 3. **时间戳单元(TSU)** - **出口处理**: - 插入精确出口时间戳(记录离开设备的时间) - 更新PTP修正字段(累计路径延迟补偿值) - **队列管理**: - 出口时间戳独立存储(与PSU队列分离) - 支持DelayReq消息的单步时间戳处理 - **最终校验**:时间戳修改后二次校验UDP完整性 #### 关键技术点: - **时间戳分离存储**: PSU处理入口时间戳,TSU处理出口时间戳,避免硬件竞争 - **两步时间戳优势**: 先记录时间戳再插入包,精度可达纳秒级(工业自动化场景) - **TAI时钟源**: 国际原子时标准,消除闰秒导致的时间跳变 - **UDP校验和强制更新**: 因时间戳修改破坏原始校验和,必须重建校验字段 > 典型应用:5G前传网络需5μs内完成时间戳处理,该硬件流水线设计可满足时效要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值