1050 String Subtraction (20 point(s))

本文介绍了一种高效处理字符串减法的方法,即从字符串S1中移除所有出现在S2中的字符。通过构建哈希表标记S2中的字符,然后遍历S1,忽略已标记的字符,实现快速计算S1-S2。此方法避免了常规方法可能遇到的时间限制错误。

1050 String Subtraction (20 point(s))

Given two strings S​1​​ and S​2​​, S=S​1​​−S​2​​ is defined to be the remaining string after taking all the characters in S​2​​from S​1​​. Your task is simply to calculate S​1​​−S​2​​ for any given strings. However, it might not be that simple to do it fast.

Input Specification:

Each input file contains one test case. Each case consists of two lines which gives S​1​​ and S​2​​, respectively. The string lengths of both strings are no more than 10​4​​. It is guaranteed that all the characters are visible ASCII codes and white space, and a new line character signals the end of a string.

Output Specification:

For each test case, print S​1​​−S​2​​ in one line.

Sample Input:

They are students.
aeiou

Sample Output:

Thy r stdnts.

考点:字符串处理、哈希表。

ASCⅡ共有128个(0~127),使用哈希表标记其是否属于s2的字符。如果标记,在s1中不输出,否则输出。常规方法会出现TLE。 

#include<iostream>
#include<string>
using namespace std;
const int LEN = 128;
bool mark[LEN]={false};
int main(void){
	string s1,s2;
	getline(cin,s1);
	getline(cin,s2);
	for(int i=0;i<s2.length();i++){
		mark[s2[i]]=true;
	}
	for(int i=0;i<s1.length();i++){
		if(!mark[s1[i]]) cout<<s1[i];
	}
	cout<<endl;
	return 0;
} 

 

1. Problem Description: A complex number is a number of the form a +bi, where a and b are real numbers and i is √-1 The numbers a and b are known as the real part and imaginary part of the complex number, respectively. You can perform addition, subtraction, multiplication, and division for complex numbers using the following formula: a+bi+c+di=(a+c)+(b+d)i a+bi-(c+di)=(a-c)+(b-d)i 第2页共2(a+bi)*(c+di)=(ac-bd)+(bc+ad)i (a+bi)/c+di)=(ac+bd)/c&sup2;+d&sup2;)+(bc-ad)i/(c&sup2;+d&sup2;) You can also obtain the absolute value for a complex number using the following formula: latbil=√a&sup2;+b (A complex number can be interpreted as a point on a plane by identifying the (a, b) values as the coordinates of the point. The absolute value of the complex number corresponds to the distance of the point to the origin, as shown in Figure 13.12b.) Design a class named Complex for representing complex numbers and the methods add, subtract, multiply, divide, abs for performing complex-number operations, and override toString method for returning a string representation for a complex number. The toString method returns a + bi as a string. If b is 0, it simply returns a. Provide three constructors Complex(a, b), Complex(a), and Complex(). Complex() creates a Complex object for number 0 and Complex(a) creates a Complex object with 0 for b. Also provide the getRealPart() and getlmaginaryPart() methods for returning the real and imaginary part of the complex number, respectively. Your Complex class should also implement the Cloneable interface. Write a test program that prompts the user to enter two complex numbers and display the result of their addition, subtraction, multiplication, and division. Here is a sample run: <Output> Enter the first complex number: 3.5 5.5 Enter the second complex number:-3.5 1 (3.5 + 5.5i) +(-3.5 + 1.0i)= 0.0 + 6.5 (3.5 + 5.5i)-(-3.5 + 1.0i)= 7.0 + 4.5i (3.5 + 5.5i)*(-3.5 + 1.0i) =-17.75 +-15.75i (3.5 + 5.5i) /(-3.5 + 1.0i)=-0.5094 +-1.7i |3.5 + 5.5il = 6.519202405202649 <End Output>
最新发布
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值