机器学习————k近邻学习

介绍

k近邻(k-Nearest Neighbor 简称KNN)学习是一种常用的监督学习算法,给定一个测试样本,基于某种距离度量来找出训练集的所有样本中与该样本最为靠近的k个样本,然后根据这k个邻居的信息进行预测。

什么时候用到KNN?

knn算法既能够处理分类任务也能进行回归分析,两种任务所采用的方法略有不同。

  • 分类任务:通常使用“投票法”,将选择出的k个邻居样本出现最多的类别标记作为最终的预测结果。
  • 回归任务:使用“平均法”,测试样本的最终输出为k个邻居样本的实值输出标记的平均值;或者按照加权平均的方式求得,距离越近,权重越大。

KNN是如何工作的?

KNN算法是懒惰学习的代表,因为它没有显示的训练过程。KNN算法是基于特征相似度的,因此确定K值是整个KNN算法的重中之重。下面举个例子说明KNN的预测过程。


优缺点分析

pros

  • 能够承担多任务,即可分类又可回归。
  • 可解释性极强,算法逻辑通俗易懂。
  • 整个预测过程的周期较短。

cons

  • 计算成本十分昂贵,由于算法保留了所有的训练数据。
  • 高存储的要求。
  • 对于数据的规模和非相关的特征来说十分敏感。

参考

《机器学习》- 周志华

Introduction to k-Nearest Neighbors: Simplified (with implementation in Python)

A Quick Introduction to K-Nearest Neighbors Algorithm

 

### KNN算法在机器学习中的实现与应用 #### 一、KNN算法简介 K近邻(K-Nearest Neighbor, KNN)是一种基本分类与回归方法。该算法的核心思想在于通过计算待测样本与训练集中各个样本的距离,选取距离最小的前K个邻居,并依据这些邻居的信息来进行决策。对于分类问题而言,则是根据多数表决原则决定新实例所属类别;而对于回归问题来说,则通常采用这K个最接近的数据点的目标属性平均值作为预测结果。 #### 二、R语言下的具体实践案例 针对鸢尾花数据集的应用展示了如何利用基础函数完成整个流程而无需依赖额外包的支持[^2]。在这个例子中,通过对不同特征维度间欧氏距离或其他度量方式的选择实现了对未知样本的有效识别。这种做法不仅有助于理解原理本身,同时也锻炼了编程技巧以及解决实际问题的能力。 ```r # 加载必要的库并读入数据 library(ggplot2) data(iris) head(iris) # 数据预处理... set.seed(1234) trainIndex <- sample(seq_len(nrow(iris)), size = floor(.7 * nrow(iris))) trainingData <- iris[trainIndex, ] testingData <- iris[-trainIndex, ] # 定义knn函数用于后续调用 knnPredict <- function(trainSet, testInstance, labels, k){ distances <- sqrt(rowSums((t(t(trainSet[,1:4]) - as.numeric(testInstance)))^2)) sortedDistIndices <- order(distances)[1:k] classCounts <- table(labels[sortedDistIndices]) return(names(which.max(classCounts))) } predictions <- sapply(as.matrix(testingData[,1:4]), knnPredict, trainSet=as.matrix(trainingData[,1:4]), labels=trainingData$Species,k=3L) confusionMatrix <- table(predictions,factor(testingData$Species)) print(confusionMatrix) ``` 上述代码片段演示了一个完整的基于自定义逻辑而非第三方工具包构建KNN模型的过程,包括但不限于数据分割、相似性测量及最终评估等方面的工作。 #### 三、应用场景探讨 尽管存在诸如计算复杂度较高等局限之处,但在某些特定条件下依然能够展现出独特价值: - **低维空间**:当输入变量数量较少时,性能表现良好; - **多模态分布**:可以很好地适应具有多个峰值的概率密度函数所描述的现象; - **快速原型开发**:由于易于理解和编码特性,在初期探索阶段可作为一种高效手段迅速验证想法可行性[^3]。 综上所述,虽然与其他更先进的技术相比可能显得不够先进,但凭借其实现简便性和灵活性依旧占据着不可替代的地位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值