Advanced Socket Topics

本文介绍如何使用非阻塞和异步套接字进行网络编程,包括设置非阻塞模式、实现异步I/O及中断驱动I/O的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

From: http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWdev/NETPROTO/p37.html#SOCKETS-22932

 

For most programmers, the mechanisms already described are enough to build distributed applications. This section describes additional features.

Nonblocking Sockets

Some applications require sockets that do not block. For example, a server would return an error code, not executing a request that cannot complete immediately. This error could cause the process to be suspended, awaiting completion. After creating and connecting a socket, issuing a fcntl (2) call, as shown in the following example, makes the socket non-blocking.

When performing I/O on a nonblocking socket, check for the error EWOULDBLOCK in errno.h , which occurs when an operation would normally block. accept (3SOCKET), connect (3SOCKET), send (3SOCKET), recv (3SOCKET), read (2), and write (2) can all return EWOULDBLOCK . If an operation such as a send (3SOCKET) cannot be done in its entirety but partial writes work, as when using a stream socket, all available data is processed. The return value is the amount of data actually sent.

Asynchronous Socket I/O

Asynchronous communication between processes is required in applications that simultaneously handle multiple requests. Asynchronous sockets must be of the SOCK_STREAM type. To make a socket asynchronous, you issue a fcntl (2) call, as shown in the following example.

After sockets are initialized, connected, and made nonblocking and asynchronous, communication is similar to reading and writing a file asynchronously. Initiate a data transfer by using send (3SOCKET), write (2), recv (3SOCKET), or read (2). A signal-driven I/O routine completes a data transfer, as described in the next section.

Interrupt-Driven Socket I/O

The SIGIO signal notifies a process when a socket, or any file descriptor, has finished a data transfer. The steps in using SIGIO are as follows:

  1. Set up a SIGIO signal handler with the signal (3C) or sigvec (3UCB) calls.

  2. Use fcntl (2) to set the process ID or process group ID to route the signal to its own process ID or process group ID. The default process group of a socket is group 0 .

  3. Convert the socket to asynchronous, as shown in Asynchronous Socket I/O .

The following sample code enables receipt of information on pending requests as the requests occur for a socket by a given process. With the addition of a handler for SIGURG , this code can also be used to prepare for receipt of SIGURG signals.

 

标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值