代码随想录算法训练营day01|704,27

博客主要解析了704和27题的算法思路。704题采用左闭右闭区间,需注意无目标数据时返回 -1;27题介绍了两种解法,暴力解法在出现要删除数值时进行 i-- 和 size-- 操作,双指针解法使用快慢指针,慢指针用于更新数组,if 判断巧妙。

704

整体采用左闭右闭区间,要注意没有目标数据的情况处理,return -1;

27

1.暴力解发:i--,size--发生在出现了要删除的数值时候,才进行变化。

2.双指针:快慢指针,慢指针当做更新数组,if判断很巧妙

在自媒体领域,内容生产效率与作品专业水准日益成为从业者的核心关切。近期推出的Coze工作流集成方案,为内容生产者构建了一套系统化、模块化的创作支持体系。该方案通过预先设计的流程模块,贯穿选题构思、素材整理、文本撰写、视觉编排及渠道分发的完整周期,显著增强了自媒体工作的规范性与产出速率。 经过多轮实践验证,这些标准化流程不仅精简了操作步骤,减少了机械性任务的比重,还借助统一的操作框架有效控制了人为失误。由此,创作者得以将主要资源集中于内容创新与深度拓展,而非消耗于日常执行事务。具体而言,在选题环节,系统依据实时舆情数据与受众偏好模型生成热点建议,辅助快速定位创作方向;在编辑阶段,则提供多套经过验证的版式方案与视觉组件,保障内容呈现兼具美学价值与阅读流畅性。 分发推广模块同样经过周密设计,整合了跨平台传播策略与效果监测工具,涵盖社交网络运营、搜索排序优化、定向推送等多重手段,旨在帮助内容突破单一渠道局限,实现更广泛的受众触达。 该集成方案在提供成熟模板的同时,保留了充分的定制空间,允许用户根据自身创作特性与阶段目标调整流程细节。这种“框架统一、细节可变”的设计哲学,兼顾了行业通用标准与个体工作习惯,提升了工具在不同应用场景中的适应性。 从行业视角观察,此方案的问世恰逢其时,回应了自媒体专业化进程中对于流程优化工具的迫切需求。其价值不仅体现在即时的效率提升,更在于构建了一个可持续迭代的创作支持生态。通过持续吸纳用户反馈与行业趋势,系统将不断演进,助力从业者保持与行业发展同步,实现创作质量与运营效能的双重进阶。 总体而言,这一工作流集成方案的引入,标志着自媒体创作方法向系统化、精细化方向的重要转变。它在提升作业效率的同时,通过结构化的工作方法强化了内容产出的专业度与可持续性,为从业者的职业化发展提供了坚实的方法论基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 代码随想录算法训练营 Day20 学习内容与作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值和重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 和一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的和等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值