题目:
There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices
思路:
题意是给你n门要上的课程,编号0~n-1,再给你一个数组,存放一些课程信息,比如[0,1]表示你上课程1之前必须上过课程0。问最后你是否能完成所有的课程。
嗯,典型的拓扑排序。判断图中是否有环。
建立邻接表。
用一个队列维护入度为0的节点;
每弹出一个入度为0的节点,与之相连的节点入度减一,如果节点入度为0,加入队列中;
当队列为空后,检查所有节点的入度是否为0,若全部为0,则有向图不存在环。
代码:
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<vector<int>> graph(numCourses,vector<int>());
vector<int> inDegree(numCourses,0);
int len=prerequisites.size();
for(int i=0;i<len;i++){
graph[prerequisites[i].first].push_back(prerequisites[i].second);
inDegree[prerequisites[i].second]++;
}
queue<int> q;
for(int i=0;i<numCourses;i++){
if(inDegree[i]==0){
q.push(i);
}
}
int cur;
while(!q.empty()){
cur=q.front();
q.pop();
for(int i=0;i<graph[cur].size();i++){
inDegree[graph[cur][i]]--;
if(inDegree[graph[cur][i]]==0){
q.push(graph[cur][i]);
}
}
}
for(int i=0;i<numCourses;i++){
if(inDegree[i]!=0){
return false;
}
}
return true;
}
};