LeetCode207. Course Schedule

题目:

https://leetcode.com/problems/course-schedule/

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices

思路:

题意是给你n门要上的课程,编号0~n-1,再给你一个数组,存放一些课程信息,比如[0,1]表示你上课程1之前必须上过课程0。问最后你是否能完成所有的课程。
嗯,典型的拓扑排序。判断图中是否有环。
建立邻接表。
用一个队列维护入度为0的节点;
每弹出一个入度为0的节点,与之相连的节点入度减一,如果节点入度为0,加入队列中;
当队列为空后,检查所有节点的入度是否为0,若全部为0,则有向图不存在环。

代码:

class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<vector<int>> graph(numCourses,vector<int>());
        vector<int> inDegree(numCourses,0);
        int len=prerequisites.size();
        for(int i=0;i<len;i++){
            graph[prerequisites[i].first].push_back(prerequisites[i].second);
            inDegree[prerequisites[i].second]++;
        }
        queue<int> q;
        for(int i=0;i<numCourses;i++){
            if(inDegree[i]==0){
                q.push(i);
            }
        }
        int cur;
        while(!q.empty()){
            cur=q.front();
            q.pop();
            for(int i=0;i<graph[cur].size();i++){
                inDegree[graph[cur][i]]--;
                if(inDegree[graph[cur][i]]==0){
                    q.push(graph[cur][i]);
                }
            }
        }
        for(int i=0;i<numCourses;i++){
            if(inDegree[i]!=0){
                return false;
            }
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值