循环神经网络(RNN)及其应用详解
1. RNN图像分类器
RNN在图像分类任务中有着重要的应用。下面我们将详细介绍如何使用RNN构建一个图像分类器,并给出具体的代码实现和运行结果。
1.1 代码实现
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10
n_input = 28
n_steps = 28
n_hidden = 128
n_classes = 10
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
x = tf.transpose(x
超级会员免费看
订阅专栏 解锁全文
1933

被折叠的 条评论
为什么被折叠?



